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Abstract

Discrete default intensity based or logit type models are commonly used as reduced form
models for conditional default probabilities for corporate loans where this default probability
depends upon macroeconomic as well as firm-specific covariates. Typically, maximum likelihood
(ML) methods are used to estimate the parameters associated with these models. Since defaults
are rare, a large amount of data is needed for this estimation resulting in a computationally
time consuming optimization. In this paper, we observe that since the defaults are typically
rare, say, on average 1 − 2% per annum, under the Gaussian assumption on covariates (which
may be achieved via transforming them), the first order equations from ML estimation suggest a
simple, accurate and intuitively appealing closed form estimator of the underlying parameters.
To gain further insights, we analyze the properties of the proposed estimator as well as the
ML estimator in a statistical asymptotic regime where the conditional probabilities decrease
to zero, the number of firms as well as the data availability time period increases to infinity.
The covariates are assumed to evolve as a stationary Gaussian process. We characterize the
dependence of the mean square error of the estimator on the number of firms as well as time
period of available data. Our conclusion, validated by numerical analysis, is that when the
underlying model is correctly specified, the proposed estimator is typically similar or only slightly
worse than the ML estimator. Importantly however, since usually any model is misspecified due
to hidden factor(s), then both the proposed and the ML estimator are equally good or equally
bad! Further, in this setting, beyond a point, both are more-or-less insensitive to increase in data,
in number of firms and in time periods of available data. This suggests that gathering excessive
expensive data may add little value to model calibration. The proposed approximations should
also have applications outside finance where logit type models are used and probabilities of
interest are small.

1 Introduction

Calibration of credit risk models to predict firm default probability is of great practical importance
in financial credit risk and has generated considerable academic literature over the past fifty years
(see, e.g., Altman 1968, Merton 1974, Ohlson 1980, Zmijewski 1984, Shumway 2001, Chava and
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Jarrow 2004, Giesecke and Goldberg 2004, Giesecke, Longstaff, Schaefer, Strebulaev 2011). In
addition, one looks to develop a modelling regime that accurately models the probabilities of joint
defaults of many firms dynamically as a function of time - this becomes particularly useful in
measuring dynamic evolution of portfolio credit risk exposure of financial institutions (see, e.g.,
Duffie, Saita and Wang 2007, Bharath and Shumway 2008 , Duan, Sun and Wang 2012, Eymen,
Giesecke, and Goldberg 2010, Juneja 2017).

In this paper we revisit the well studied problem of estimating the conditional default probability
of a firm as a function of common macroeconomy dependent and firm specific covariates. Tradi-
tionally, dynamic evolution of risk is modelled using doubly stochastic continuous time processes.
Default intensity of each firm is modelled as a function of continuous time stochastic covariates.
These covariates may be a solution to a stochastic differential equation. Popular covariates include
prevalent treasury rates, trailing stock index return, distance to default of each firm and some
firm-specific financial ratios. Dependence between obligors is captured by allowing the underlying
covariates to evolve in a dependent manner. Conditioned on the realized default intensities, the
firm default times are assumed to occur independently, each as the first event of a non-homogeneous
Poisson process whose intensity corresponds to the realized default intensity of the firm.

In this paper, we work in a similar doubly stochastic framework, the only difference being that
we model the covariates as well as the corresponding obligor default intensities as discrete time
stochastic processes (as in Duan, Sun and Wang 2012, Duan and Fulop 2013). The benefits are
that discrete time processes are usually simpler to analyze. Even continuous time models are
typically first discretized both for calibration purposes as well as for simulating sample paths, so
this too makes analysis of discrete time models important (see, e.g., Duffie, Saita and Wang 2007,
Bharath and Shumway 2008).

In discrete time, with time restricted to integers, typically, one expresses conditional default
probabilities at time t as some function f(βᵀXt), where the underlying covariates are denoted by a
random vector Xt, and β denotes coefficients calibrated from data. An econometric model may be
fit to explain the time dynamics of the covariates process Xt. Typically separately, the coefficients
β are estimated from data often using the maximum likelihood (ML) estimation method. With
this in place, one has a dynamic model of portfolio credit risk. The actual framework maybe more
nuanced - the covariates may be firm dependent, and the coefficients may be a function of the
grouping or a class to which the firm belongs.

Standard methods to estimate parameters, such as β above, involve solving a complex optimiza-
tion problem using non linear optimization methods or even sequential Monte Carlo methods (see,
Duffie et. al. 2007, Duan et. al. 2012, Duan and Fulop 2013). These can be extremely time
consuming given the huge datasets that are often used for calibration purposes. These problems
are also difficult since the defaults are rare events and sufficient amount of data is needed to contain
enough defaults to allow for accurate calibration. Further, these computational procedures provide
little insight on the underlying factors that determine these parameters.

It is this parameter estimation problem that we address in this paper for a few popular classes
of conditional default probability models. For presentation ease, we restrict times in our discrete
time models to integers. Consider a popular discretised default intensity based model, for a firm
surviving till time t ∈ Z+, the non-negative hazard rate intensity within times [t, t+ 1) is assumed
to have the form exp(βTXt−α) where Xt denotes the value of the covariates at time t, while β and
α are parameters that may be estimated from data. This implies that the conditional probability
of default between times t and t+ 1 has the form

1− exp(− exp(βTXt − α)) (1.1)

(see, e.g., Duffie et. al. 2007, Bharath and Shumway 2008, Duan et. al. 2012, Duan and Fulop
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2013).
Logit type models are another class of popular models to which our analysis is applicable. Here,

the conditional default probabilities have the form

exp(βᵀXt − α)

1 + exp(βᵀXt − α)
(1.2)

(see, e.g., Shumway 2001, Chava and Jarrow 2004).
We develop closed form approximate expressions for estimated parameters. In particular, we

show that each parameter maybe approximated by the weighted average of the corresponding covari-
ate observed just before default occurrences. In typical calibration settings, for instance when the
default probabilities in a small period (say, a month or a quarter) are of order one in a thousand,
when the number of firms observed is less than a few thousand, if the data generating model is
correctly specified (that is, the structure of the conditional default probability that we assume is
indeed the true structure that governs the default generation) we observe analytically as well as
numerically that our estimator has similar root mean square error compared to the ML estima-
tor. When the number of firms increases beyond a few thousands, our estimator is slightly worse
compared to the ML estimator. Similarly, when the default probabilities increase to say five per
thousand in a small time period, the accuracy of the proposed estimator somewhat worsens.

However, typically, the model that we assume for generating default probabilities may be mis-
specified - it may lack some hidden co-variates (see, e.g., Duffie, Eckner, Horel and Saita 2009), or
it may be structurally misrepresentative, or very likely, both. In such settings, we observe that the
proposed approximations are equally good (or equally bad!) compared to ML estimators. This is
also borne by performance of the proposed estimator on real data where it is seen to be as accurate
as ML methods in predicting defaults. The proposed closed form expressions also provide crisp,
and intuitively appealing insights into factors that influence the estimated parameters.

To gain further insights into the performance of the proposed estimator, we embed the calibra-
tion problem in a sequence of correctly specified statistical models indexed by the rarity of the
underlying defaults. The resulting asymptotic analysis sheds further light into the accuracy of
proposed approximations and the amount of samples needed for accurate estimation as a function
of the rarity of the underlying default probabilities.

In a simple set up, we also compare the proposed estimator with the ML estimator in our
asymptotic regime. Our key observations are that when the model is misspecified even by a small
amount, the misspecification error dominates other errors so that the proposed estimator and the
ML estimator perform similarly. In particular, increasing data both in terms of the number of
firms and the time periods considered, beyond a point, lead to virtually no improvement in the
estimator quality. This may have ramifications both in search for more accurate models as well as
on cost-benefit tradeoffs in gathering data for model calibration.

Our analysis relies on two straightforward observations:

1. In practice, when the covariates have substantially non-Gaussian marginal distributions, it
is easy to find simple functional transformations so that the resulting random variables have
distributions that are well modelled as multi-variate Gaussian.

2. Under the assumption that the covariates are multi-variate Gaussian, and exp(βTX − α) is
small, expectations such as

EH(X)
exp(βTX − α)

1 + exp(βTX − α)
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are well approximated by
EH(X)exp(βTX − α). (1.3)

When H(X) is a simple polynomial in its components, then (1.3) has a closed form solution.

This then provides a closed form expression for the dominant term in the solution of resulting
first order equation in the maximum likelihood method.

It can be shown (this discussion will be added in an updated version) that when the underlying
coefficients are small for some covariates, that is, the conditional default probabilities are less
sensitive to some covariates, even if these covariates do not have a Gaussian distribution, a simple
Taylor series based analysis supports the approximations that we propose.

The proposed approximations should have wider utility to applications where logit type con-
ditional probability models are used, and associated conditional probabilities typically take small
values. See for instance Milton, Shankar and Mannering (2008) and references therein for related
literature in transportation safety, and Bagley, White and Golomb (2001) and references therein
for related literature in medical community.

The structure of the remaining paper is as follows: In Section 2, we first discuss how the maxi-
mum likelihood estimators are arrived at in a set-up that includes the two popular regimes: When
the conditional probabilities have the forms (1.1) and (1.2). We also identify the proposed estimator
suggested by these equations under the assumption that covariates have a multivariate Gaussian
distribution. In Section 3, we introduce the mathematical framework including a statistical asymp-
totic regime under which we conduct our analysis. In Section 4, we discuss the proposed estimators,
and conduct their asymptotic performance analysis. We also discuss the performance of the ML
estimators under correct and misspecified models, in this section. Numerical results based on sim-
ulation generated default data are presented in Section 5. In Section 6, we compare the proposed
estimator with the maximum likelihood estimator on a small sample of US corporate default data.
It is well known in corporate default literature that defaults tend to cluster displaying a contagion
effect. We also observe here that appropriately including contagion effect as a factor improves the
performance of the proposed estimator. In Section 7 we end with a brief conclusion. Proofs except
for the simplest ones, are all kept in the Appendix.

2 Calibration via the maximum likelihood method

We first discuss the maximum likelihood (ML) estimation methodology for estimating parameters
in the models suggested by (1.1) and (1.2).

Suppose that the data available involves m firms, observed over discrete set of time periods
{0, 1, . . . , T}. Further:

• For integer d1 ≥ 1, (yt ∈ <d1 : t = 0, 1, . . . , T ) denotes the value of the common factors.
These may include prevailing interest rates, stock market returns over the last some months,
etc.

• We suppose that Firm i it came into existence at time si ≤ T − 1 with si = 0 if it already
exists at time 0. Let τi denote its default time if it defaults by time T . Specifically, set τi = t
if the firm defaults between time periods t and t + 1. Else, if the firm does not default by
time T , set τi =∞. Let fi = min(τi, T ).

• For integer d2 ≥ 1, let (xi,t ∈ <d2 : si ≤ t ≤ fi− 1) denote firm specific information available.
This may correspond to firm’s estimated distance to default, its size, its net income to total
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asset ratio. Let (di,t : si < t ≤ fi) indicate when the firm defaults. Thus, di,t = 1 if the firm
defaults between time t− 1 and t. Else, it equals 0.

In this framework, let p(yt, xi,t) denote the conditional probability that a Firm i, surviving at
time t, defaults between time t and t + 1. This is assumed to be a function of (yt, xi,t) given
(ys, xj,s : s ≤ t, j ≤ m). This probability also depends upon underlying parameters that need to be
estimated from data.

Then, the likelihood, call it L of seeing the default data (di,t : si < t ≤ fi) for each i ≤ m, is
given by

L =
∏
i≤m

fi−1∏
t=si

(
p(yt, xi,t)

di,t+1(1− p(yt, xi,t))1−di,t+1

)
(2.1)

ML estimation of underlying parameters then corresponds to finding parameters that maximize L,
or equivalently, logL.

Consider the specific setting of the default intensity model where

p(yt, xi,t) = 1− exp(−eβᵀyt+ηᵀxi,t−α)

for parameters β ∈ <d1 , η ∈ <d2 and α ∈ <. For notational convenience, let vi,t = (yt, xi,t) ∈ <d1+d2 ,
and β̃ = (β, η).

Setting the partial derivatives with each component of β̃ and α to zero, the following relations
are well known and easily derived: Component wise,

fi−1∑
i≤m,t=si

vi,te
β̂ᵀvi,t−α̂

1− exp(−eβ̂ᵀvi,t−α̂)
di,t+1 =

fi−1∑
i≤m,t=si

vi,te
β̂ᵀvi,t−α̂ (2.2)

and
fi−1∑

i≤m,t=si

eβ̂
ᵀvi,t−α̂

1− exp(−eβ̂ᵀvi,t−α̂)
di,t+1 =

fi−1∑
i≤m,t=si

eβ̂
ᵀvi,t−α̂, (2.3)

where β̂ and α̂ are a solution to these equations.
Similarly, when the conditional default probabilities have the logit structure,

p(vi,t) =
exp(β̃ᵀvi,t − α)

1 + exp(β̃ᵀvi,t − α)
.

As is well known, in this case the function logL is a convex function of underlying parameters
(β̃, α). Setting the partial derivatives with these parameters to zero, we get, component wise, the
well known results

fi−1∑
i≤m,t=si

vi,tdi,t+1 =

fi−1∑
i≤m,t=si

vi,t
exp(β̂ᵀvi,t − α̂)

1 + exp(β̂ᵀvi,t − α̂)
. (2.4)

and
fi−1∑

i≤m,t=si

di,t+1 =

fi−1∑
i≤m,t=si

exp(β̂ᵀvi,t − α̂)

1 + exp(β̂ᵀvi,t − α̂)
, (2.5)

where the LHS is simply the number of defaults observed during the periods of observation, and
again where β̂ and α̂ are a solution to these equations.
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2.1 Gaussian approximations

Let τ =
∑

i≤m(fi − si) denote the firm periods of data available.
In our analysis we assume that {yt} for 0 ≤ t ≤ T and xi,t : i ≤ m for surviving firms, are

realizations of a stationary process {(Yt, (Xi,t, i ≤ m))} (also denoted by {(Vi,t, i ≤ m)}) observed
at integer times 0 ≤ t < T , which is further assumed to be multivariate Gaussian. As discussed
in the introduction, the covariates originally may not be Gaussian, but we assume that they are
suitably transformed to have a Gaussian marginal distribution. More specifically, the transformed
variables form a stationary multivariate Gaussian process where each marginal has been normalized
to have stationary mean zero and variance one.

When the defaults occur with small probabilities, we may approximate RHS of (2.3) and (2.5)
divided by τ by

E
(

exp(β̃ᵀVi,t − α)
)
,

which, as is well known, equals

exp

(
1

2
β̃ᵀΣβ̃ − α

)
,

where Σ denotes the correlation matrix of (Vi,t) and is assumed to be independent of i.
Similarly, the RHS of (2.2) and (2.4) divided by τ may be approximated by

E(Vi,t exp(β̃ᵀVi,t − α)).

This equals

Σβ̃ exp

(
1

2
β̃ᵀΣβ̃ − α

)
.

Assume that Σ is known and invertible. Then, the above discussion suggests that

β̃ ≈ Σ−1
∑fi−1

i≤m,t=si vi,tdi,t+1∑fi−1
i≤m,t=si di,t+1

. (2.6)

Then, the RHS above, call it β̂, is our proposed estimator for β̃. Motivated by (2.3) and (2.5),
our estimator for α, α̂, is set as

α̂ , log

(∑fi−1
i≤m,t=si exp(β̂ᵀvi,t)∑fi−1

i≤m,t=si di,t+1

)
. (2.7)

Remark 1. Let the weighted average of the covariates observed before defaults

∑fi−1

i≤m,t=si
vi,tdi,t+1∑fi−1

i≤m,t=si
di,t+1

be denoted by ŵ. Then, we have
β̂ = Σ−1ŵ.

Now suppose that Σ−1 is not known but is estimated from data by Σ̂−1. Then, a reasonable
estimator of β̃ is

β̌ = Σ̂−1ŵ. (2.8)

This may be re-expressed as
Σ−1ŵ + (Σ̂−1 − Σ−1)ŵ.

In our asymptotic analysis later in Section 4, if Σ̂−1 is a sufficiently accurate estimator of Σ−1,
then the contribution to mean square error E(β̌ − β̃)2 due to replacing Σ̂−1 by Σ−1 in (2.8) can
be negligible. This, and the need to avoid undue tediousness in analysis, motivates our assumption
that the variance covariance matrix Σ is known.
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Remark 2. An easy extension of above estimators to multiple K classes is to assume that the
parameters β̃ are same across all classes and are estimated as above by β̂ assuming that the data
comes from a single class. The parameters (αi : i ≤ K) are allowed to be class dependent and they
measure the riskiness of each class. These, for each k, can be estimated as

α̂k , log

∑fi,k−1
i≤mk,t=si,k

exp(β̂ᵀui,k,t)∑fi,k−1
i≤m,t=si,k di,k,t+1


where the subscript k attached to original notation (m, s,fi, di,t) denotes that the associated data
is class specific.

As mentioned earlier, in the next sections we characterize the performance of the proposed
estimators.

3 Mathematical framework

We consider m firms observed over discrete set of time periods t = 0, 1, 2, . . . , T. For simplicity, we
assume that all firms belong to the same class, or that they are statistically homogeneous.

Recall that Yt ∈ <d1 denotes the vector of common market information at time t, and for firm
i ≤ m, Xi,t ∈ <d2 denotes a vector of company specific information at time t, and Vi,t = (Yt, Xi,t).
Further, (Vi,t : i ≤ m)0≤t≤T denote a stationary Gaussian process restricted to integer times
0 ≤ t ≤ T . We let (Vi : i ≤ m) denote the random variables with the associated stationary
distribution. These, as indicated earlier, are all assumed to be normalized to have marginal mean
zero and variance one.

Let ΣY Y ∈ <d1×d1 denote the correlation matrix corresponding to Y , ΣY X ∈ <d1×d2 denote the
correlation matrix between Y and Xi which we assume to be same for all i ≤ m (also denoted by
ΣT
XY ). Similarly, let ΣXX ∈ <d2×d2 denote the correlation matrix between the components of Xi

again assumed to be same for all i.
Further, let

Σ ,

(
ΣY Y ΣY X

ΣXY ΣXX

)
. (3.1)

Thus, Σ denotes the correlation matrix of Vi.

3.1 Asymptotic formulation

Since the conditional default probabilities are typically very small, we analyze the calibration
problem in a regime indexed by γ as γ ↓ 0. We assume that the stochastic process {Vi,t : i ≤
m}0≤t≤T is independent of γ while the parameters β(γ) ∈ <d1 , η(γ) ∈ <d2 (let β̃(γ) denote
(β(γ), η(γ)) and α(γ) ∈ < are deterministic functions of γ. Later, when we move on to parameter
estimation methodology, we will allow T and each m to increase with γ, although that is not needed
at this stage. In addition to Vi,t, we define a sequence of iid uniform (between 0 and 1) random
variables, Ui,t independent of Vi,t’s. A firm i which has survived up to time t defaults between time
t and t+ 1 if

Ui,t+1 ≤ p(γ, Vi,t). (3.2)

Let Di,t+1 = 1 if firm i ≤ m(γ) that survives up to time t in our framework, defaults between times
t and t+ 1. Let Ft denote the sigma algebra generated by (Ui,s, Vi,s : s ≤ t). Further, we define τi
as

τi = min{T (γ)− 1,min{t ≥ 0 : Di,t+1 = 1}} (3.3)

7



Thus, if Firm i defaults between times t and t+ 1, τi = t. Then by (3.2)

E(Di,t+1|Ft) = p(γ, Vi,t)I(τi ≥ t). (3.4)

We posit that for firm i ≤ m, the conditional default probability p(γ, Vi,t) of defaulting in period
(t, t+ 1], conditioned on Ft, and it surviving at time t, is small and is given by:

p(γ, Vi,t) = exp(β̃ᵀ(γ)Vi,t − α(γ))(1 +H(γ, Vi,t)), (3.5)

where we assume that H(γ, Vi,t)→ 0 as γ → 0, almost surely.
Let

p(γ) , Ep(γ, Vi) = E
(

exp(β̃ᵀ(γ)Vi − α(γ))(1 +H(γ, Vi))
)

(3.6)

denote the steady state conditional probability of default of a customer (these as per our assump-
tions are same for each customer).

We assume that p(γ)→ 0 as γ → 0.
Note that

E
(

exp(β̃ᵀ(γ)Vi − α(γ))
)

= exp

(
1

2
β̃ᵀ(γ)Σβ̃(γ)− α(γ)

)
. (3.7)

As suggested earlier, our aim is to develop and exploit the approximation

p(γ) ∼ exp

(
1

2
β̃ᵀ(γ)Σβ̃(γ)− α(γ)

)
.

To this end we impose some simple conditions on β̃(γ), α(γ) and H(γ, Vi).

Assumption 1. Suppose that

1.
α(γ) = log(1/γ)− log c

where c > 0 is a constant.

2. The vector β̃(γ) is independent of γ and is denoted by β̃ = (β, η).

3. Further,
|H(γ, Vi)| ≤ Cγ exp(β̃ᵀVi) (3.8)

a.s. for a constant C > 0.

Remark 3. One instance of (3.8) is when the conditional default probabilities at any time t have
the form

1− exp
(
−eβ̃ᵀVi,t−α(γ)

)
.

Here, since ex(1− ex/2) ≤ 1− exp(−ex) ≤ ex, it is easily seen that

C =
c

2

satisfies (3.8).
Another instance of (3.8) is when conditional default probabilities at any time t have a logit

representation
exp(β̃ᵀVi,t − α(γ))

1 + exp(β̃ᵀVi,t − α(γ))
.
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Here, since for each x, ex(1− ex) ≤ ex

1+ex ≤ e
x, it is easily seen that

C = c

satisfies (3.8).

Remark 4. It is easy to extend our analysis if we assume more generally that

α(γ) ∼ log(1/γ)− log c

and
β̃(γ) ∼ log(1/γ)ψβ̃

for some ψ ∈ [0, 1/2). However, this leads to increase in tediousness of developed analysis without
adding to meaningful insights. Further, the data does not suggest that the parameters associated
with the covariates take large values.

As mentioned earlier, the proposed estimators remain effective even when some of the covariates
do not have a Gaussian distribution, as long as the corresponding components of β̃(γ) → 0 as
γ → 0.

Let V
(j)
i denote the component j of Vi, and Σj denotes the row j of matrix Σ. The following

observations are easily seen under Assumption 1:

p(γ) = cγ exp(
1

2
β̃ᵀΣβ̃) +O(γ2). (3.9)

Further,

E
(
V

(j)
i exp(β̃ᵀVi − α(γ))(1 +H(γ, Vi))

)
= Σj β̃cγ exp(

1

2
β̃ᵀΣβ̃) +O(γ2). (3.10)

4 Parameter Estimation

For notational simplicity we assume that all m firms are functional at time 0. We enhance our
asymptotic regime by allowing the number of firms, as well as the total time for which the system
is observed to increase as γ reduces to zero. Specifically, suppose that the number of firms, m(γ) =
m̃/γδ for δ > 0 and total number of periods T (γ) = γ−ζ for ζ ∈ (0, 1).

The rationale for this form is data driven: Typical time periods that we have in mind are in
months or quarters. The conditional default probabilities then are typically of order 10−3, so one
may heuristically view γ ∼ 10−3. We are typically looking at data involving tens of thousands
of firms, so δ ∈ [1, 2), is reasonable although there may be cases where the data is limited and
δ ∈ (0, 1) is a better representation. The time period can be in order of tens of years, so ζ ∈ (0, 1)
appears reasonable.

Note that the expected total number of defaults observed,

T (γ)−1∑
t=0

m(γ)∑
i=1

EDi,t+1 = Θ(γ−(ζ+δ−1))

and increases to infinity as γ → 0 when ζ + δ > 1. If ζ + δ < 1, the number of observed defaults
converges to zero as γ → 0.

Guided by our discussion in Section 2 leading to (2.6), we now develop our parameter estimation
methodology.
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4.1 Proposed estimators

Consider the following sequence of random variables indexed by γ

D̂γ =
1

γT (γ)m(γ)

T (γ)−1∑
t=0

m(γ)∑
i=1

Di,t+1. (4.1)

Similarly, define the sequences of random vectors,

V̂γ =
1

γT (γ)m(γ)

T (γ)−1∑
t=0

m(γ)∑
i=1

Vi,tDi,t+1. (4.2)

As suggested in (2.6), the proposed estimator for β is

β̂(γ) , Σ−1 × V̂γ

D̂γ

. (4.3)

Recall that
E(Di,t+1|Ft) = exp(β̃ᵀVi,t − α)(1 +H(γ, Vi,t))I(τi ≥ t),

and thus,

α = log

(∑m(γ)
i=1

∑T (γ)−1
t=0 E(exp(β̃ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t))∑m(γ)

i=1

∑T (γ)−1
t=0 EDi,t+1

)
(4.4)

as γ → 0. This motivates our empirical estimator for α,

α̂(γ) , log

(∑m(γ)
i=1

∑T (γ)−1
t=0 exp(β̂ᵀ(γ)Vi,t)I(τi ≥ t)∑m(γ)
i=1

∑T (γ)−1
t=0 Di,t+1

)
, (4.5)

where β̂(γ) is the estimator for β̃.

4.2 Covariates as a stationary Vector Autoregressive Process

To support further analysis we make a reasonable assumption that the covariates (Vi,t : t ≥ 0) for
each i ≤ m, follow an order 1 vector autoregressive process (VAR (1)). Specifically, we assume that

Yt = AYt−1 + εt (4.6)

and for each i,
Xi,t = BYt−1 + CXi,t−1 + ψi,t (4.7)

where matrix A takes values in <d1×d1 , matrix B takes values in <d2×d1 , matrix C takes values in
<d2×d2 , εt is a vector of i.i.d. Gaussian mean zero variance one, random variables taking values in
<d1 , and (ψi,t : i ≤ m, t ≥ 0) is a collection of independent Gaussian vectors taking values in <d2 ,
whose components are independent standard (mean zero, variance 1) Gaussian random variables,
that are also independent of (εt : t ≥ 0).

Let

M ,

(
A 0
B C

)
. (4.8)

Then, (4.6) and (4.7) may be re-expressed as,

Vi,t = M · Vi,t−1 + φi,t, (4.9)
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where, φi,t ∈ <d1+d2 is a column vector (εt, ψi,t)
ᵀ. Let ‖A‖ denote the operator norm for the matrix

A, that is,
‖A‖ = inf

r∈<+
(r : ‖Ax‖2 ≤ r‖x‖2),

where ‖y‖2 denotes the Euclidean norm for any vector y. It follows that ‖Ax‖2 ≤ ‖A‖‖x‖2 ∀x.
As is well known, the process (Vi,t : t ≥ 0) has a stationary distribution if ‖M‖ < 1. In that case
the stationary distribution is Gaussian in <d1+d2 , with componentwise mean zero and variance Σ
(notationally denoted by N(0,Σ)),where Σ is the solution to the matrix equation

MΣMᵀ = Σ− I.

Remark 5. It can be shown that Σ =
∑∞

l=0M
l · (M l)ᵀ. The existence of a solution is guaranteed

by the fact that ‖M‖ < 1.

In summary, we make the following assumption for (Vi,t : t ≥ 0) for each i.

Assumption 2. The covariates (Vi,t : t ≥ 0) for each i follow the VAR (1) process (4.9). Further,
‖M‖ < 1, and Vi,0 is distributed as N(0,Σ) so that each (Vi,t : t ≥ 0) is a stationary process.

4.3 Main results

Recall that β̂(γ) and α̂(γ), respectively, denote the proposed estimators for the true parameters β̃
and α. Theorem 4.1 specifies the order of the mean square error of the proposed estimators. Let

‖X‖2 = E

(
n∑
i=1

X2
i

) 1
2

denote the L2 norm for any <n valued random vector X = (X1, . . . , Xn).

All the results that follow are under Assumptions 1 and 2.

Theorem 4.1. The following relations hold:

1.
‖β̃ − β̂(γ)‖22 = O(γζ) +O(γζ+δ−1), (4.10)

and

2.
‖α− α̂(γ)‖22 = O(γζ) +O(γζ+δ−1). (4.11)

Remark 6. Theorem 4.1 makes an interesting observation related to the sensitivity of the proposed
estimator to the systemic risk. Recall that ζ ∈ (0, 1). Observe the obvious fact that if δ + ζ < 1
then the mean square error increases as γ → 0. This is because asymptotically, no defaults are
observed in the data. Now consider two regimes

1. δ ≥ 1. In this case, further increase in δ does not reduce the mean square error of the
parameters. Thus, having more than order γ−1 firms in a single class does not help in
improving accuracy of calibration.

2. δ < 1. In this case, it is clear that increasing δ does reduce the mean square error of the
parameters.
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Thus, having more firms data is useful up to order γ−1, thereafter its utility to proposed estimator
is marginal.

In Theorem 4.2, we find the order of the mean square of relative error of the firm default
conditional probability when the covariates have a stationary distribution. This is perhaps a better
measure of error vis-a-vis mean square error in estimating parameters, since ultimately our interest
is in the error made in forecasting conditional probabilities. Also, given that in our asymptotic
regime, default probabilities are decreasing to zero, relative error is a more appropriate measure of
estimation error vis-a-vis absolute error.

Theorem 4.2. Assuming that Vi below is independent of β̂ and α̂,

E

(
p(γ, Vi)− exp(β̂ᵀ(γ)Vi − α̂(γ))

p(γ, Vi)

)2

= O(γζ) +O(γζ+δ−1). (4.12)

Remark 7. Since β̂ and α̂ are estimated from past data, and these are used to provide conditional
probabilities in future, there may be mild dependence between future covariates and these estimated
parameters. The assumption above that these are independent is somewhat reasonable. It can be
relaxed to allow for mild dependence without affecting the conclusions.

4.4 Maximum likelihood estimator in the proposed asymptotic regime

We provide a brief heuristic explanation for the performance of the maximum likelihood estimator
(MLE). Recall that the proposed estimator requires that for T (γ) = γ−ζ and number of obligors
m(γ) = m̃γ−δ, δ + ζ > 1 and ζ ∈ (0, 1) for the mean square error (MSE) to decrease to zero as
γ → 0. Increasing the number of obligors so that δ > 1, no longer improves the rate of decay of
MSE. We highlight here that for MLE even when T (γ) is small, e.g., ζ = 0, but ζ+ δ > 1, the MSE
of MLE asymptotically reduces to zero at the rate γζ+δ−1. This difference is corroborated by the
numerical experiments. Rigorous analysis will appear in a more elaborate version of this report.

Consider the first order conditions for MLE in our asymptotic framework when the underlying
model is either logit or default intensity based. Further, for simplicity, assume that α(γ) is known.
Recall that

τi = min{T (γ)− 1,min{t ≥ 0 : Di,t+1 = 1}}.

Also, τi ∼ T (γ) as γ → 0. In both the cases, we have

∑
i≤m(γ),t≤τi

Vi,tDi,t+1 =

 ∑
i≤m(γ),t≤τi

Vi,t exp(β̂ᵀVi,t − α(γ))

 (1 +O(γ)), (4.13)

Expanding the RHS in (4.13) using Taylor’s expansion around β̃, dividing both sides by γ m(γ)T (γ),
and observing that along the set τi ≥ t,

E(Di,t+1|Ft) = exp(β̃ᵀVi,t − α(γ))(1 +O(γ)),

we get

1

γm(γ)T (γ)

∑
i≤m(γ),t≤τi

Vi,t (Di,t+1 − E(Di,t+1|Ft)) =
1

γm(γ)T (γ)
(β̂−β̃)ᵀ

∑
i≤m(γ),t≤τi

U2
i,t exp(β̃ᵀVi,t−α(γ))

(4.14)
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plus higher order terms, where the vector U2
i,t denotes (U2

i,t(j) : 1 ≤ j ≤ d1 +d2), that is, the vector
obtained by squaring each component of Vi,t.

Since, the terms (Di,t+1 − E(Di,t+1|Ft)) are zero mean random variables independent for each t
and i, with variance of order γ (as γ → 0), it is easy to see that the expectation of the square of
LHS of (4.14) converges to zero if γm(γ)T (γ)→ 0, or in our set up, when ζ + δ > 1. In particular,
even when ζ = 0, for δ > 1, this term decreases to zero as γ → 0.

To complete our argument, observe that

1

m(γ)T (γ)

∑
i≤m,t≤τi

U2
i,t exp(β̃ᵀVi,t)

converges as γ → 0. (recall that τi ∼ T (γ)). If T (γ) = O(1) (ζ = 0), and m(γ) → ∞ (δ > 0),
this converges to a random vector. If both T (γ) and m(γ) increase to infinity, this converges to a
constant. In either case, heuristically, we see that mean square error of β̂ − β̃ converges to zero.

The above discussion also suggests that β̂ − β̃ suitably normalized has a non-trivial limiting
distribution, that may be useful in constructing confidence intervals. We explore this as well in our
ongoing research.

4.5 Performance of MLE under model misspecification

In this section, we heuristically examine the effect of model misspecification on the MLE as well as
our proposed estimator in a simple illustrative setting. We capture misspecification by assuming
that the model generating defaults has two Gaussian factors common to all obligors, while the
modeller assumes that only one of the two factors exists; the other is hidden or latent. Further,
the model in both cases is assumed to be logit for simplicity. Let (Y1,t, Y2,t : 1 ≤ t ≤ T (γ)) denote
the time series corresponding to the two factors. Further assume that (Y1,t, Y2,t) have a stationary
distribution under which random variables Y1,t and Y2,t are assumed to have zero mean, variance
1 and correlation ρ amongst them. Let (β1, β2, α(γ)) denote the parameters of default generation,
where as before α(γ) = log(1/γ)−log c. Thus, the default probability of obligor i ≤ m(γ) defaulting
at time t+ 1 ≤ T (γ) is given by

exp(β1Y1,t + β2Y2,t − α(γ))

1 + exp(β1Y1,t + β2Y2,t − α(γ))
.

Suppose it is thought (wrongly) that only the first factor with time series (Y1,t : 1 ≤ t ≤ T (γ))

impact the conditional default probabilities of obligors. The parameters (β̂1, α̂) are then estimated
from the first order MLE equations:

1

γm(γ)T (γ)

∑
i≤m(γ),t≤τi

Y1,tDi,t+1 =
1

γm(γ)T (γ)

∑
i≤m(γ),t≤τi

Y1,t
exp(β̂1Yi,t − α̂)

1 + exp(β̂1Yi,t − α̂)
, (4.15)

and
1

γm(γ)T (γ)

∑
i≤m(γ),t≤τi

Di,t+1 =
1

γm(γ)T (γ)

∑
i≤m(γ),t≤τi

exp(β̂1Yi,t − α̂)

1 + exp(β̂1Yi,t − α̂)
. (4.16)

When γm(γ)T (γ)→∞, the LHS in (4.15) converges to

cEY1,t exp(β1Y1,t + β2Y2,t) = c(β1 + ρβ2) exp

(
1

2
(β21 + 2ρβ1β2 + β22)

)
,
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and the RHS in (4.15) is asymptotically similar (as γ → 0) to

1

γ
EY1,t exp(β̂1Y1,t − α̂) =

1

γ
β̂1 exp

(
1

2
β̂21 − α̂

)
.

Similarly, the LHS in (4.16) converges to

E exp(β1Y1,t + β2Y2,t) = c exp

(
1

2
(β21 + 2ρβ1β2 + β22)

)
,

and the RHS in (4.16) is asymptotically similar (as γ → 0) to

1

γ
E exp(β̂1Y1,t − α̂) =

1

γ
exp

(
1

2
β̂21 − α̂

)
.

Equating for parameters, it is easily seen that

β̂1 = β1 + ρβ2

and

α̂ = α(γ)− β22(1− ρ2)
2

.

It can be similarly seen that the proposed estimator under the same assumptions also converges
to these values. The upshot is that while the MLE and the proposed estimator converge to the
same value under this model misspecification, they both are equally wrong in the limit. Thus,
practitioner may as well use the simpler proposed estimator. These observations are validated by
our numerical experiments in Section 6.

5 Numerical Experiments

In this section we use simulation to generate default data and on this data compare the estimated
root mean square error (RMSE) of the proposed estimator of the underlying parameters with the
estimated RMSE of their MLE. The default generating model comprises three Gaussian distributed
factors for each firm, two common and one firm specific. For the most part the generating model is
logit, towards the end of this section, we also provide comparisons when the data is generated using
the default intensity model. We compare the two estimators when we know the underlying factors
that are used to generate the data as well as when one of the factors is not known. The former
corresponds to correctly specified model while the latter is an example of a misspecified model.

We first consider the case where default probabilities are about 1% per annum (one twelfth of
that per each discrete time period). Our broad conclusions are that when the model is correctly
specified, our estimator is close in accuracy to the MLE when the number of firms is around 3,000
or less. Consistent with the theory, MLE performs relatively better when the number of firms
increases as well as when the number of time periods increase, although even for large time periods
(corresponding to sixty years of data), when the number of firms is not too large, our estimator
has only slightly larger RMSE compared to MLE.

We also consider the case where default probabilities are of order 5% and observe MLE performs
better than the proposed estimator, although in all cases, the RMSE of both the estimators is quite
small.

When the underlying model is misspecified, as when one of he common factors is latent to the
calibrator, we observe that both our proposed estimator as well as MLE have more or less identical
RMSE even for large number of firms and long time periods of data availability, and for small and
large values of annual default probabilities.
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5.1 Setup

(Y1,t, Y2,t : t ≤ T ) denote the underlying Gaussian factors while (Xi,t : i ≤ m, t ≤ T ) denote the
idiosyncratic factors. These are generated as follows:

Y1,t = 0.3 · Y1,t−1 +N1,t(0, 1)

Y2,t = 0.3 · Y2,t−1 +N2,t(0, 1)

Xi,t = Ni,t(0, 1)

where N1,t(0, 1), N2,t(0, 1) and Ni,t(0, 1) are i.i.d. mean zero variance 1 standard Gaussian
variables. (Y1,0, Y2,0) are generated from the stationary distribution, that is

Y1,0 ∼ N
(

0,
1

1− 0.32

)
and

Y2,0 ∼ N
(

0,
1

1− 0.32

)
.

The conditional default probability for firm i at time t for default at time t+ 1 is set to

P (Di,t+1 = 1|Xi,t, Y1,t, Y2,t) =
exp(β1Xi,t + β2Y1,t + β3Y2,t − α)

1 + exp(β1Xi,t + β2Y1,t + β3Y2,t − α)

and defaults are generated by comparing independently generated standard uniformly distributed
random variables with conditional default probabilities. Initially, parameters (β1, β2, β3, α) are
selected so that average default probability is about 1%.

First consider case where the calibrator is aware of the three underlying factors and estimates
(β1, β2, β3, α) from the generated default data. In that case, in each experiment, we generate the
default data for various values of m and T , arrive at estimators for the parameters (β1, β2, β3, α)
using the two approaches. These experiments are repeated 500 times and the RMSE is estimated
under the two approaches for (β1, β2, β3) as the square root of the average of the square of the sum
of the discrepancy in estimated values with the true values. These estimated values are referred
to as RMSE(βprop) and RMSE(βML) under the two methods. Similarly, the errors associated with
estimators for α are referred to as RMSE(αprop) and RMSE(αML).

The experiments are conducted in two sets: In the first set, we let the number of firms m vary
from 1000 to 10,000. We let the number of time periods T = 200. In the second set, T varies from
100 to 700, and m = 2, 000.

The results are reported in Table 1. These experiments are repeated when the true parameters
are selected so that average default probability is about 5% in Table 2. As mentioned earlier, in all
cases, the RMSE of both the estimators is quite small. For instance, when the number of firms is
3,000 and the data is generated for 200 months, when the annual default probability is about 1%,
the RMSE of the proposed estimator is about 14% of the absolute value of the underlying β, while
that of the MLE is about 13%. When the annual default probability is about 5%, all else being the
same, the RMSE of the proposed estimator is about 11% of the absolute value of the underlying
β, while that of the MLE is about 6%.
When the model is misspecified in the sense that the calibrator assumes that only factors (Y1,t, Xi,t)
determine the default likelihood for firm i at time t + 1, and uses data to estimate parameters
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(β1, β2, α). The RMSE is estimated under the two approaches for (β1, β2) in Table 3. These exper-
iments are also repeated when the true parameters are selected so that average default probability
is about 5% in Table 4.

Further, in Table 5, we change the data generating model to correspond to the default intensity
model. The parameters are kept so that the default probabilities are again around 1% per annum.
We compare the RMSE of the proposed estimator with the MLE where for the latter we assuming
that the underlying model is logit. It is seen that since this model mis-specification is minor in
nature, it leads to a negligible increase in mean square error for both the estimators. We do not
use the default intensity based model to estimate MLE’s in our experiments in this Section due to
the enormous time needed to arrive at the correct values. This is discussed further in Section 6.

Table 1: Comparison of RMSE for default probability 1% per annum, model correctly specified

Time in months No. of firms RMSE(βprop) RMSE(αprop) RMSE(βML) RMSE(αML)

200 1000 0.1280 0.1195 0.1248 0.1144
200 3000 0.0787 0.0663 0.0707 0.0608
200 5000 0.0685 0.0648 0.0574 0.0519
200 7000 0.0574 0.0616 0.0435 0.0424
200 10000 0.0547 0.0547 0.0374 0.0331

100 2000 0.1232 0.1260 0.1157 0.1081
300 2000 0.0774 0.0670 0.0714 0.0565
500 2000 0.0608 0.0529 0.0547 0.0479
700 2000 0.0565 0.0489 0.0509 0.0424

True Parameters: (α = 7.5, β1 = −0.2, β2 = 0.5, β3 = 0.5). RMSE of the proposed estimator is only slightly larger
than that of MLE except when the no. of companies is large.
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Table 2: Comparison of RMSE for default probability 5% per annum, correctly specified model

Time in months No. of firms RMSE(βprop) RMSE(αprop) RMSE(βML) RMSE(αML)

200 1000 0.0741 0.0663 0.0556 0.0489
200 3000 0.0608 0.0547 0.0331 0.0223
200 5000 0.0574 0.0538 0.0244 0.0173
200 7000 0.0547 0.0538 0.0223 0.0173
200 10000 0.0547 0.0529 0.0173 0.0173

100 2000 0.0761 0.0812 0.0479 0.0412
300 2000 0.0663 0.0583 0.0360 0.0300
500 2000 0.0670 0.0565 0.0331 0.0300
700 2000 0.0741 0.0747 0.0316 0.0282

True Parameters: (α = 5.5, β1 = −0.2, β2 = 0.5, β3 = 0.5). RMSE of the proposed estimator worsens compared to
MLE as the number of firms or the time period of data generated becomes large. In both the estimators, in all cases,
the relative error is not very large.

Table 3: Comparison of RMSE for default probability 1% per annum, missing covariate with small
and large coefficient

β3 No. of firms RMSE(βprop) RMSE(αprop) RMSE(βML) RMSE(αML)

0.5 1000 0.1403 0.1493 0.1392 0.1489
0.5 3000 0.0871 0.1363 0.0842 0.1367
0.5 5000 0.0741 0.1303 0.0721 0.1307
0.5 7000 0.0754 0.1276 0.0707 0.1280

2 1000 0.3109 1.8770 0.3231 1.8785
2 3000 0.2958 1.8810 0.3041 1.8828
2 5000 0.3046 1.8852 0.3135 1.8874
2 7000 0.3014 1.8733 0.3072 1.8775

True Parameters: (α = 7.5, β1 = −0.2, β2 = 0.5), β3 as specified above. Time period in above experiments is set to
200. Both the proposed estimator and MLE estimate parameters (α, β1, β2) only. The RMSE of the two methods is
nearly identical. It worsens as model misspecification increases, that is as value of β3 increases.
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Table 4: Comparison of RMSE for default probability 5% per annum, missing covariate with small
and large coefficient

β3 No. of firms RMSE(βprop) RMSE(αprop) RMSE(βML) MSE(αML)

0.5 1000 0.0871 0.1288 0.0748 0.1345
0.5 3000 0.0721 0.1204 0.0608 0.1260
0.5 5000 0.0678 0.1204 0.0574 0.1252
0.5 7000 0.0678 0.1187 0.0547 0.1256

2 1000 0.3376 1.6765 0.3474 1.7172
2 3000 0.3399 1.6714 0.3489 1.7189
2 5000 0.3459 1.6652 0.3439 1.7090
2 7000 0.3911 1.6331 0.3919 1.6813

True Parameters: (α = 5.5, β1 = −0.2, β2 = 0.5), β3 as specified above. Time period in above experiments is set to
200. Both the proposed estimator and MLE estimate parameters (α, β1, β2) only. The RMSE of the two methods is
nearly identical and higher than in Table 4. It worsens as model misspecification increases, that is as the β3 value
increases.

Table 5: Comparison of RMSE for default probability 1% per annum. Data generated using default
intensity model, calibration conducted using logit model.

No. of firms MSE(βprop) MSE(αprop) MSE(βML) MSE(αML)

1000 0.1322 0.1144 0.1272 0.1063
3000 0.0824 0.0854 0.0714 0.0640
5000 0.0670 0.0574 0.0574 0.0479
7000 0.0583 0.0538 0.0469 0.0412

True Parameters: (α = 7.5, β1 = −0.2, β2 = 0.5, β3 = 0.5). Time periods are fixed at 200. This illustrates that when
the default probabilities are small and the model is somewhat misspecified, both the proposed method and the MLE
perform similarly and quite well.

6 US Corporate Default Data

6.1 Description of Data

We use a publicly available dataset provided by Research Management Institute, National Univer-
sity of Singapore, for calibration and testing of corporate defaults in the US. This data is a subset
of a larger dataset used in [5]. The parent data contains a sample of 12,268 US public firms over
the period from 1991 to 2011 assembled from the CRSP monthly and daily files and the Compustat
quarterly file. However, the publicly available sample only contains 2,000 companies over the same
time period.

The data consists of standard market, accounting and macroeconomic variables used for identifi-
cation in other default studies. Specifically, variables available to us are distance to default (DTD)
(see Merton 1974), ratio of cash to total assets (CASHTA), ratio of net income to total assets
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(NITA), market size of the company (SIZE), ratio of market to book value (M/B), interest rate
of the economy, and the treasury bill rate. The firm-specific variables have been de-constructed
into ‘level’ and ‘trend’ components, where level is the moving 12 month average and trend is the
difference of value at time (t) and the moving average of the past 12 months (t,t-12).

Summary statistics of the data are provided in below:

• Number of Companies: 2,000

• Time Duration: 251 months (1991-2011)

• Number of Effective Company-Month Observations: 180,329

• Total Number of Defaults: 168 (For year-wise split, refer to Table 6)

• There are no missing observations for active companies in our panel.

Table 6: Number of Defaults by Calendar Year

S No. Year Number of Defaults

1 1991 5
2 1992 8
3 1993 2
4 1994 0
5 1995 4
6 1996 7
7 1997 10
8 1998 8
9 1999 15
10 2000 15

S No. Year Number of Defaults

11 2001 29
12 2002 19
13 2003 11
14 2004 6
15 2005 2
16 2006 1
17 2007 3
18 2008 6
19 2009 10
20 2010 5

6.2 Pre-Calibration Processing

We short list six variables of the set of twelve which give us the best accuracy ratios (through
trial and error). These variables are transformed using log, square and square transformations so
that they resemble normal distribution. DTD level is log transformed to give log DTD level
(log(DTD level)), DTDtrend and SIZEtrend are square transformed to sq DTDtrend and sq
SIZEtrend, respectively. The variables are then standardized by subtracting their empirical mean
and dividing the result by variables empirical standard deviation.

Fig 1 and Fig 2 provide histograms of variables pre and post transformations respectively. Table 7
shows that we do improve on our specification post the transformation.

6.3 Comparing different estimators

In order to compare the proposed estimator with those obtained by using the MLE associated with
default intensity model and the logit model, comparison tests (same as ones used by Duffie et al.
2007 and Duan et al. 2012) were conducted. Transformed variables were used while implementing
the MLE as well, although the comparative performance of the MLE estimator (discussed later in
Section 6.4) was insensitive to this transformation.

19



Figure 1: Frequency Plots of Variables without Transformation

0

300

600

900

1200

0 5 10 15
DTD_level

co
un

t

0

500

1000

1500

−10 0 10 20
DTDtrend

co
un

t

0

20000

40000

60000

−0.5 0.0 0.5
CASHTAtrend

co
un

t

0

30000

60000

90000

−2 −1 0 1 2
NITAtrend

co
un

t

0

2000

4000

6000

−3 −2 −1 0 1 2 3
SIZEtrend

co
un

t

0

10000

20000

30000

40000

−0.25 0.00 0.25 0.50
IndexReturn

co
un

t

20



Figure 2: Frequency Plots of Variables after Transformation
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The tests were conducted by segmenting the data in two sets: The first set is used to calibrate the
parameters of the proposed model. The parameters were then used to generate default probabilities
for the second set. The accuracy of the prediction was tested by using realized defaults in the second
set. Specific steps are given below.

1. The testing process is iterative. For each t, starting at t0 = 156, the dataset was separated
into 1 to t (fitting dataset) and t to t+12 (testing dataset).

2. The firms in the testing dataset are ranked in decreasing order of their conditional default
probabilities and bucketed into ten deciles.

3. Defaults in each decile bucket were noted and a cumulative coverage of the defaults is reported
next to the decile. As an example, if for t = 190, 16 defaults occur in the next year (that is,
period 191 to 202) 10 from the firms listed in the top decile of risk, 5 from the next decile
and 1 from the fifth decile, then the first decile is allocated number 10, second decile number
15, and the fifth decile number 16, the rest are allocated 16 for this iteration.

4. This process is iteratively continued for each year beginning at t = 156 to t = 238, and the
numbers in each decile are added.

5. Finally, these numbers are averaged and reported for each method, and the cumulative per-
centage coverage is reported with each decile.

As is apparent, a better predictive method is likely to have higher percentages of defaults allo-
cated to higher deciles.

Solving for MLE’s using the default intensity model (DIM) is a non-convex optimization problem
and Duan et al. (2012) use a Sequential Monte Carlo (SMC) algorithm to obtain β parameters
of DIM. However, the algorithm takes about 40 hours to run on a 4GB RAM Core i5 system.
Nelder-Mead Search optimization routine is used as an approximation for SMC. The optimization
routine performs well under reasonable initialization conditions and takes about 20-25 minutes to
complete one iteration. The Nelder-Mead optimisation algorithm is used as a part of the ‘Optim’
package in base R.

6.4 Results

The three models were calibrated using six transformed variables: log of distance to default levels,
the square of DTD trend, square of size trend, cash to total assets trend, net income to total assets
trend and stock market return.

Results of the calibrations are given in Table 8 and 9. Our calibrated betas are similar in
magnitude and sign to betas calibrated through logistic regression. However, the betas estimated
by Default Intensity MLE (DIM) are different. This might be due to limitations of the Nelder-
Mead algorithm, which was run for 1500 iterations. Moreover, note that in terms of the accuracy
statistics, our calibration performs better than either of the other models. Our calibration predicts
about 90% of the defaults in the first decile, where as other models are at 85%. However, these
statistics should be viewed with due caution as we have only 35 defaults to test our fitted-model
on.

6.5 Inclusion of Contagion Effect

According to corporate default literature (see, e.g., Giesecke et. al. 2011), default data shows
contagion effect in the sense that occurrences of a default increases the probability of occurrences
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Table 7: Accuracy Table with and without Transform

Decile Without Transform With Transform

1 0.842 0.895
2 0.921 0.974
3 0.974 0.974
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1
9 1 1

Our calibration methodology performs better when the variables are transformed to a normal
distribution.

Table 8: Combined Beta Table

Decile Our Calibration DIM Logit

Constant −9.251 −6.739 −9.344
log DTD level −1.330 −0.425 −1.837
sq DTDtrend −0.199 0.320 −1.267

CASHTAtrend −0.035 0.006 −0.045
NITAtrend −0.417 −0.108 −0.060

sq SIZEtrend −1.477 −0.615 −0.565
IndexReturn −0.342 −0.089 −0.218

Table 9: Combined Accuracy Table

Decile Our Calibration DIM Logit

1 0.895 0.842 0.763
2 0.974 0.947 0.921
3 0.974 0.974 0.947
4 1 0.974 0.947
5 1 0.974 0.947
6 1 0.974 0.974
7 1 0.974 1
8 1 1 1
9 1 1 1
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of other defaults in the near time horizon. In order to capture this effect, we use aggregate number
of defaults in the last period, suitable normalized as a contagion factor in our calibration. The
results after including this new variable are shown in Table 10 and 11.

On this limited data, unlike other models, our calibration model performs marginally better
(92.1% accuracy) after including the contagion variable.

Table 10: Combined Beta Table with Contagion

Variable Our Calibration DIM Logit

Constant −9.806 −6.811 −9.145
log DTD level −1.281 −0.322 −1.587
sq DTDtrend −0.174 0.072 −1.235

CASHTAtrend −0.033 0.181 −0.042
NITAtrend −0.410 0.223 −0.061

sq SIZEtrend −1.462 −0.755 −0.582
IndexReturn 0.021 0.007 −0.198
Contagion 1.117 0.194 0.046

Table 11: Combined Accuracy Table with Contagion

Decile Our Calibration DIM Logit

1 0.921 0.868 0.763
2 0.974 0.947 0.921
3 0.974 0.974 0.947
4 1 1 0.947
5 1 1 0.974
6 1 1 0.974
7 1 1 1
8 1 1 1
9 1 1 1

Note that adding the contagion variable marginally improves the fit of the calibration; however, the forward intensity
and logit fits remain the same.

7 Conclusion

In this paper we considered the popular default intensity based as well as Logit models that have
been used in the past to model corporate defaults. We developed an approximate closed form
estimator for parameters - we showed that each parameter maybe approximated by a weighted
average of the corresponding covariate observed just before default occurrences. This provides great
deal of insight into factors that drive these estimators. We further evaluated the performance of this
estimator in a reasonable asymptotic regime. We showed both theoretically and numerically that
the proposed estimators perform about as well as those obtained by using far more computationally
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intensive maximum likelihood methods when the underlying default generating model is correctly
specified. Realistically, the default generating mechanism is unknown, and any proposed model is
misspecified. In this case we argued that the proposed estimators are as effective as those obtained
using the maximum likelihood method. Further, at least on limited corporate default data available
to us, we observed that the proposed estimator performs at least as well as MLE under Logit and
default intensity models. This supports the use of the proposed estimator for ascertaining and
ranking default probabilities.

A Outline of proof of Theorem 4.1

In this section, we provide an outline of the proof of Theorems 4.1 and 4.2. The proofs of all the
intermediate lemmas are given in Appendix A.1.
To prove (4.10) in Theorem 4.1, observe that

‖β̃ − β̂(γ)‖2 ≤ ‖β̂(γ)− β∗(γ)‖2 + ‖β∗(γ)− β̃‖2, (A.1)

where

β∗(γ) = Σ−1
E(V̂γ)

E(D̂γ)
.

We develop order upper bounds for the two terms in (A.1). The following observation is essential∥∥∥ EV̂γ
ED̂γ

− Σ · β̃
∥∥∥
2

= O(γ) (A.2)

From (A.2) it follows that
‖β∗(γ)− β̃‖2 = O(γ), (A.3)

since

‖β∗(γ)− β̃‖2 =
∥∥∥Σ−1

(
EV̂γ

ED̂γ

− Σ · β̃

)∥∥∥
2

≤ ‖Σ−1‖
∥∥∥ EV̂γ
ED̂γ

− Σ · β̃
∥∥∥
2
.

To see (A.2), we need the following componentwise result:

Lemma A.1. ∣∣∣EV̂ (i)
γ

ED̂γ

− (Σ · β̃)i

∣∣∣ = O(γ) ∀i ∈ {1, 2, · · · , d} (A.4)

Then (A.2) follows as

∥∥∥ EV̂γ
ED̂γ

− Σ · β̃
∥∥∥
2
≤

d∑
i=1

∣∣∣EV̂ (i)
γ

ED̂γ

− (Σ · β̃)i

∣∣∣
= O(γ).

Lemma A.2 stated below helps upper bound the second term in the RHS of (A.1).

Lemma A.2.
‖β̂(γ)− β∗(γ)‖22 = O(γζ+δ−1) +O(γζ). (A.5)
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Since ζ ∈ (0, 1), Equation (4.10) of Theorem 4.1 then follows.

To see (4.11) in Theorem 1, define

α∗(γ) = log

(∑m(γ)
i=1

∑T (γ)−1
t=0 E((exp β̂ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t))∑m(γ)

i=1

∑T (γ)−1
t=0 EDi,t

)
. (A.6)

Then, (4.11) follows from Lemmas A.3 and A.4 below.

Lemma A.3.
‖α− α∗(γ)‖22 = O(γζ) +O(γζ+δ−1). (A.7)

Lemma A.4.
‖α̂(γ)− α∗(γ)‖22 = O(γζ) +O(γζ+δ−1). (A.8)

Proof of Theorem 4.2: We use Theorem 4.1 to outline the key steps in proof of Theorem 4.2.
Note that,

exp(β̃ᵀVi,t − α)− exp(β̂ᵀ(γ)Vi,t − α̂(γ))

exp(β̃ᵀVi,t − α)
= 1− exp((β̃ − β̂(γ))ᵀVi,t + (α− α̂(γ))

= (β̃ − β̂(γ))ᵀVi,t + (α− α̂(γ)) +
1

2
((β̃ − β̂(γ))ᵀVi,t + (α− α̂(γ))2 + rem. terms (A.9)

Squaring (A.9),

V ᵀ
i,t(β̃ − β̂(γ))(β̃ − β̂(γ))ᵀVi,t + (α− α̂(γ))2 + ((β̃ − β̂(γ))ᵀVi,t + (α− α̂(γ))3 + rem. terms (A.10)

As in the proof of Lemma A.2, we ignore the terms of order larger than 2, as they are asymp-
totically negligible (more detailed analysis would be added in an updated version):

V ᵀ
i,t(β̃ − β̂(γ))(β̃ − β̂(γ))ᵀVi,t + (α− α̂(γ))2 + 2(α− α̂(γ))(β̃ − β̂(γ))ᵀVi,t. (A.11)

Note that using (4.11) from Theorem 1, (α − α̂(γ))2 decays as O(γζ) + O(γδ+ζ−1). For the first
term, we use the independence assumption of Remark 7 to get

‖β̂(γ)− β̃‖22‖Σ‖ = O(γζ) +O(γδ+ζ−1),

where Σ is the covariance matrix of Vi,t. Finally, the last term can be bounded similarly using the
Cauchy -Schwarz inequality.

A.1 Proofs of key lemmas

We now prove the lemmas used in the proof of Theorem 4.1. The proofs of further intermediate
lemmas are presented later in Section A.2.
Proof of Lemma A.1 : To keep the notation simple, we prove the lemma for the one dimensional
case. The proof is extended to dimension d ≥ 2 by essentially following the same steps.

We assume that {Vi,t} follows the evolution:

Vi,t = ρVi,t−1 +Ni,t,
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with |ρ| < 1 and Ni,t denote the iid standard Gaussian noise. In the one dimensional case, note

that (Σβ̃)1 = β̃
1−ρ2 .

To prove Lemma A.1, observe that

EDi,t+1 = E

t−1∏
j=0

(1− p(γ, Vi,j))p(γ, Vi,t)

EVi,tDi,t+1 = E
t−1∏
j=0

(1− p(γ, Vi,j))Vi,tp(γ, Vi,t),

where recall that
p(γ, Vi,j) = cγ exp(β̃Vi,j)(1 +H(γ, Vi,j)).

Hence,

ED̂γ =
1

γT (γ)m(γ)

m(γ)∑
i=1

T (γ)−1∑
t=0

E
t−1∏
j=0

(1− p(γ, Vi,j))p(γ, Vi,t)

EV̂γ =
1

γT (γ)m(γ)

m(γ)∑
i=1

T (γ)−1∑
t=0

E
t−1∏
j=0

(1− p(γ, Vi,j))Vi,tp(γ, Vi,t).

It can be seen that

T (γ)−1∑
t=0

t−1∏
j=0

(1− xj)xt =

T (γ)∑
k=1

(−1)k+1

T (γ)−1∑
ik=k−1

· · ·
i2−1∑
i1=0

xi1 · · ·xik .

Using the above, and removing m(γ) as all firms are homogeneous:

ED̂γ =
1

γT (γ)
E

T (γ)∑
k=1

(−1)k+1

T (γ)−1∑
jk=k−1

· · ·
i2−1∑
j1=0

p(γ, Vi,j1) · · · p(γ, Vi,jk)

 (A.12)

EV̂γ =
1

γT (γ)
E

T (γ)∑
k=1

(−1)k+1

T (γ)−1∑
jk=k−1

· · ·
i2−1∑
j1=0

Vi,jkp(γ, Vi,j1) · · · p(γ, Vi,jk)

 . (A.13)

The proof follows once we show that

EV̂γ −
β̃

1− ρ2
ED̂γ = O(γ)

while ED̂γ is greater than or equal to a positive constant as γ → 0.
To this end, a few additional results are needed. Suppose that {Yt}t≥0 is an AR(1) stationary

process with the evolution
Yt = ρYt−1 +Nt,

with Y0 ∼ N
(

0, 1
1−ρ2

)
and Nt is an iid standard Gaussian process. Let j1 < . . . < jk, and Ck2 be

the set of all their pair-wise combinations. Then, the following are true:

27



Lemma A.5.

E

(
exp

(
β̃

k∑
r=1

Yjr

))
= exp

 β̃2

1− ρ2

1

2
k +

∑
im,in∈Ck2 :im>in

ρ(im−in)

 (A.14)

and

Lemma A.6.

E

(
Yjk exp

(
β̃

k∑
r=1

Yjr

))
=

β̃

1− ρ2

(
1 +

k−1∑
r=1

ρ(jk−jr)

)
exp

 β̃2

1− ρ2

1

2
k +

∑
im,in∈Ck2 :im>in

ρ(im−in)


(A.15)

Using Lemmas A.5, A.6 and the definition of p(γ, Vi,t), it can be seen that

EV̂γ −
β̃

1− ρ2
ED̂γ

equals

1

γT (γ)

T (γ)∑
k=2

(−1)k+1ckγk
T (γ)−1∑
jk=k−1

· · ·
j2−1∑
j1=0

(
k−1∑
r=1

ρ(jk−jr)

)
exp

 β̃2

1− ρ2

1

2
k +

∑
im,in∈Ck2 :im>in

ρ(im−in)

+O(γ).

(A.16)
Let

Sk ,
T (γ)−1∑
jk=k−1

· · ·
j2−1∑
j1=0

(
k−1∑
r=1

ρ(jk−jr)

)
exp

 β̃2

1− ρ2

1

2
k +

∑
im,in∈Ck2 :im>in

ρ(im−in)

 .

Then,

EV̂γ −
β̃

1− ρ2
ED̂γ =

1

γT (γ)

T (γ)∑
k=2

(−1)k+1γkSk +O(γ). (A.17)

To proceed further we need an upper bound on the exponential component of Sk which is
independent of the choice of j1, . . . jk, but dependent on k. The following lemma is useful to this
end.

Lemma A.7. Let j1 < . . . < jk and let Ck2 be the set of all their pair-wise combinations. Then,∑
im,in∈Ck2 :im>in

ρ(im−in) ≤ k

1− |ρ|
(A.18)

Then,

Sk ≤ exp

(
β̃2

1− ρ2

(
1

2
+

1

1− |ρ|

)
k

)
T (γ)−1∑
jk=k−1

· · ·
j2−1∑
j1=0

(
k−1∑
r=1

|ρ|(jk−jr)
)

(A.19)
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Now,

T (γ)−1∑
jk=k−1

· · ·
j2−1∑
j1=0

(
k−1∑
r=1

|ρ|(jk−jr)
)

=

T (γ)−1∑
jk=k−1

jk−1∑
jk−1=k−2

|ρ|(jk−jk−1)

jk−1−1∑
jk−2=k−3

· · ·
j2−1∑
j1=0

(
1 +

k−2∑
r=1

|ρ|jk−1−jr

)

≤ k
T (γ)−1∑
jk=k−1

jk−1∑
jk−1=k−2

|ρ|(jk−jk−1)jk−2k−1

≤ kT (γ)k−1

Thus,

EV̂γ −
β̃

1− ρ2
ED̂γ ≤

1

γT (γ)

T (γ)∑
k=2

c̃kkγkT (γ)k−1 +O(γ), (A.20)

for an appropriate constant c̃. Further, it is easy to see that since T (γ) = γ−ζ , the RHS above is
O(γ).

Similarly, ED̂γ equals

1

γT (γ)

T (γ)∑
k=1

(−1)k+1γk
T (γ)−1∑
jk=k−1

· · ·
j2−1∑
j1=0

exp

 β2

1− ρ2

1

2
k +

∑
im,in∈Ck2 :im>in

ρ(im−in)

+O(γ). (A.21)

This equals c exp( β2

2(1−ρ2)) plus

1

γT (γ)

T (γ)∑
k=2

(−1)k+1γk
T (γ)−1∑
jk=k−1

· · ·
j2−1∑
j1=0

exp

 β2

1− ρ2

1

2
k +

∑
im,in∈Ck2 :im>in

ρ(im−in)

+O(γ). (A.22)

As before, (A.22) is O(γ), and the result follows.

Proof of Lemma A.2 :
Establishing Lemma A.2 reduces to estimating the expectation of the square of the error

V̂
(1)
γ

D̂γ

− EV̂
(1)
γ

ED̂γ

,

where V̂
(1)
γ denotes the first component of vector V̂γ . To estimate this, consider the function

f(x, y) = x/y. From Taylor’s series expansion around (x0, y0), we have

f(x, y) = f(x0, y0) + (x− x0)
∂f(x0, y0)

∂x
+ (y − y0)

∂f(x0, y0)

∂y
+ . . . .

Thus,

V̂
(1)
γ

D̂γ

=
EV̂

(1)
γ

ED̂γ

+
1

ED̂γ

(V̂ (1)
γ − EV̂ (1)

γ )− EV̂
(1)
γ

(ED̂γ)2
(D̂γ − ED̂γ) + rem. terms,

where rem. terms above denotes the remainder higher order terms that can be shown to be
asymptotically negligible compared to the dominant terms above (the supporting analysis would
be added in a more elaborate version of this paper).
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Hence,

E

(
V̂

(1)
γ

D̂γ

− EV̂
(1)
γ

ED̂γ

)2

=
1

(ED̂γ)2
E(V̂ (1)

γ −EV̂ (1)
γ )2+

(EV̂
(1)
γ )2

(ED̂γ)4
E(D̂γ−ED̂γ)2−2

EV̂
(1)
γ

(ED̂γ)3
E
(

(V̂ (1)
γ − EV̂ (1)

γ )(D̂γ − ED̂γ)
)

+ rem. terms.

(A.23)
We now get a handle on the terms above. The essence is captured in analyzing

E(D̂γ − ED̂γ)2,

since similar bounds will follow for the other terms. We may rewrite (D̂γ − ED̂γ) as

1

γT (γ)m(γ)

T (γ)−1∑
t=0

m(γ)∑
i=1

(Di,t+1 − E(Di,t+1|Ft)) +
1

γT (γ)m(γ)

T (γ)−1∑
t=0

m(γ)∑
i=1

(E(Di,t+1|Ft)− EDi,t+1),

then the error E(D̂γ − ED̂γ)2 is the expectation of 1

γT (γ)m(γ)

T (γ)−1∑
t=0

m(γ)∑
i=1

(Di,t+1 − E(Di,t+1|Ft)) +
1

γT (γ)m(γ)

T (γ)−1∑
t=0

m(γ)∑
i=1

(E(Di,t+1|Ft)− EDi,t+1)

2

(A.24)
Note that the cross terms where one term has the form Di,t+1−E(Di,t+1|Ft), have an expectation
zero, and thus, the expectation of (A.24) equals

1

γ2T 2(γ)m2(γ)

T (γ)−1∑
t=0

m(γ)∑
i=1

E(Di,t+1 − E(Di,t+1|Ft))2 + (A.25)

1

γ2T 2(γ)m2(γ)

T (γ)−1∑
t1=0

T (γ)−1∑
t2=0

m(γ)∑
i1=1

m(γ)∑
i2=1

E ((E(Di1,t1+1|Ft1)− EDi1,t1+1)(E(Di2,t2+1|Ft2)− EDi2,t2+1)) .

(A.26)
Note that the expectation in (A.25) can be bounded above by a constant times γ for each i and t.
Then,

1

γ2T 2(γ)m2(γ)

T (γ)−1∑
t=0

m(γ)∑
i=1

E(Di,t+1 − E(Di,t+1|Ft))2 = Θ(γζ+δ−1) (A.27)

We now place a bound on (A.26). First fix an i and t and consider

E (E (Di1,t1+1|Ft1)− EDi1,t1+1) (E (Di2,t2+1|Ft2)− EDi2,t2+1))

= E (E (Di1,t1+1|Ft1)E (Di2,t2+1|Ft2))− E (Di1,t1+1)E (Di2,t2+1) . (A.28)

We note that

E(Di,t+1|Ft) = p(γ, Vi,t)I(τi ≥ t) ≤ cγ exp(β̃ᵀVi,t)(1 +H(γ, Vi,t)) a.s. ∀i, t
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Bounding (A.28) hence boils down to evaluating

γ2c2
(
E(exp(β̃ᵀVi,t1) exp(β̃ᵀVj,t2))− E(exp(β̃ᵀVi,t))

2
)

+O(γ3), (A.29)

along with some significant error terms. By stationarity,

E(exp(β̃ᵀVi,t))
2 = exp

(
β̃ᵀ ·

∞∑
l=0

M l · (M l)ᵀβ̃

)
∀i, t. (A.30)

To analyze the first term of (A.29), we need to get a handle on E((Vi,t1 +Vj,t2)(Vi,t1 +Vj,t2)ᵀ), done
by the following lemma. Define

I? ,

(
I 0
0 0

)
, (A.31)

where I is the identity matrix of dimension d1, and I? ∈ <(d1+d2)×(d1+d2). Recall that Vi,t has the
time evolution

Vi,t = M · Vi,t−1 + φi,t, (A.32)

Lemma A.8. Let i, j ∈ {1, 2, . . .m(γ)}, i 6= j, t1, t2 ∈ {1, 2, . . . T (γ)}, t1 ≤ t2. Then in the setup
of (A.32),

E((Vi,t1 + Vj,t2)(Vi,t1 + Vj,t2)ᵀ) =

2

∞∑
l=0

M l · (M l)ᵀ +M t2−t1 .
∞∑
l=0

M l · I?(M l)ᵀ +

( ∞∑
l=0

M l · I? · (M l)ᵀ

)
· (M t2−t1)ᵀ. (A.33)

By Lemma A.8,

E(exp(β̃ᵀVi,t1) exp(β̃ᵀVj,t2)) = exp

(
β̃ᵀ ·

∞∑
l=0

M l · (M l)ᵀβ̃ + β̃ᵀM t2−t1 .

∞∑
l=0

M l · I? · (M l)ᵀβ̃

)
.

(A.34)
The next lemma is required to bound (A.34). Fix t2 − t1 to be equal to k ∈ {1, 2, . . . T (γ) − 1}.
Then,

Lemma A.9.

β̃ᵀMk.

∞∑
l=0

M l · I? · (M l)ᵀβ̃ ≤ ‖β̃‖22
1− ‖M‖2

‖M‖k. (A.35)

Using (A.35) we can upper bound the sum

1

γ2 · T 2(γ)m2(γ)

m(γ)∑
i1=0

m(γ)∑
i2=0

T (γ)∑
t1=0

T (γ)∑
t2=0

(E (E (Di1,t1+1|Ft1)E (Di2,t2+1|Ft2))− E (Di1,t1+1)E (Di2,t2+1)) .

We first note that we can use (A.34) and (A.30) to rewrite this as

exp
(
β̃T ·

∑∞
l=0M

l · (M l)T β̃
)

T 2(γ)m2(γ)

m(γ)∑
i1=0

m(γ)∑
i2=0

T (γ)∑
t1=0

T (γ)∑
t2=0

(
exp

(
β̃ᵀM t2−t1 .

∞∑
l=0

M l · I? · (M l)ᵀβ̃

)
− 1

)
(A.36)

plus remainder terms. We note an observation: In asymptotic analysis, we need only consider the
case where i1 6= i2 and t1 6= t2. Suppose t2 = t1. In such a case M t2−t1 = I. Further, the number
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of cases in which this occurs is exactly equal to T (γ), and the expression inside the summation,
exp(β̃ᵀ

∑∞
l=0M

l · I?(M l)ᵀβ̃)− 1 is bounded. To see this, consider the following

〈β̃.
∞∑
l=0

M l · I? · (M l)T β̃〉 ≤ ‖β̃‖2
∥∥∥ ∞∑
l=0

M l · I? · (M l)T β̃
∥∥∥

≤ ‖β̃‖22
1− ‖M‖2

Hence, by summing over all i1, i2 a decay rate of T (γ)−1 will be obtained. Now consider i1 = i2.
In such a case, it can be seen using (A.58), that the only change is replacement of I? by I. In
both cases the bound in (A.35) will still hold and hence, an identical analysis will suffice. We
henceforth only consider cases where i1 6= i2 and t1 6= t2. We first evaluate the outer sum over
all m(γ)(m(γ)− 1) cases where i1 6= i2. By using the fact that all firms are statistically identical,
(A.36) can be upper bounded by

exp
(
β̃T ·

∑∞
l=0M

l · (M l)ᵀβ̃
)

T 2(γ)

T (γ)∑
t1=0

T (γ)∑
t2=0

(
exp

(
β̃ᵀM t2−t1 .

∞∑
l=0

M l · I? · (M l)ᵀβ̃

)
− 1

)
.

Next, we note that the number of times where t2 − t1 = k is exactly T (γ)− k. Using Lemma A.9
we can upper bound the above by

exp
(
β̃ᵀ ·

∑∞
l=0M

l · (M l)ᵀβ̃
)

T (γ)

∞∑
k=0

(
exp

(
‖β̃‖2

1− ‖M‖2
‖M‖k

)
− 1

)
. (A.37)

We now need the following bound on exponential sums

Lemma A.10. Let θ ∈ <, ρ ∈ (0, 1). Then,

∞∑
k=0

(
exp(θ · ρk)− 1

)
<∞. (A.38)

With θ = ‖β̃‖2
1−‖M‖2 and ρ = ‖M‖, Lemma A.10 means that the summation in (A.37) is finite and

thus,

exp
(
β̃ᵀ ·

∑∞
l=0M

l · (M l)ᵀβ̃
)

T (γ)

∞∑
k=0

(
exp

(
‖β̃‖2

1− ‖M‖2
‖M‖k

)
− 1

)
= O(γζ). (A.39)

We now get a handle on the error. Consider the significant part of the Taylor series (A.23),

1

(ED̂γ)2
E(V̂ (1)

γ − EV̂ (1)
γ )2 +

(EV̂
(1)
γ )2

(ED̂γ)4
E(D̂γ − ED̂γ)2 − 2

EV̂
(1)
γ

(ED̂γ)3
E
(

(V̂ (1)
γ − EV̂ (1)

γ )(D̂γ − ED̂γ)
)

From Lemma A.1, we can rewrite the above as

1

(ED̂γ)2
E(V̂ (1)

γ −EV̂ (1)
γ )2+

(Σβ̃)21
(ED̂γ)2

E(D̂γ−ED̂γ)2−2
(Σβ̃)1

(ED̂γ)2
E
(

(V̂ (1)
γ − EV̂ (1)

γ )(D̂γ − ED̂γ)
)

+O(γ)

(A.40)
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As in (A.26), the significant sources of error are the errors in EDi,t+1 and EVi,tDi,t+1. Similar to
Lemma A.1, it can be shown that for all i, t,∣∣∣∣∣EV

(1)
i,t Di,t+1

EDi,t+1
− (Σβ)1

∣∣∣∣∣ = O(γ) (A.41)

Let
EDi,t+1 = cγE exp(β̃ᵀVi,t) + e1(γ)

and
EV

(1)
i,t Di,t+1 = cγEV

(1)
i,t exp(β̃ᵀVi,t) + e2(γ),

where e1(γ) and e2(γ) are error terms. By (A.41),

e2(γ) = (Σβ̃)1e1(γ) +O(γ). (A.42)

Then, from Lemma A.1 and (A.40) the total error is

(Σβ̃)1e2(γ) + (Σβ̃)21e1(γ)− (Σβ̃)1((Σβ̃)1e1(γ) + e2(γ))

(EDγ)2
+O(γ) = O(γ)

Lemma A.2 is hence proved.

Proof of Lemma A.3 :
First note that

α(γ)− α∗(γ) = log

( ∑m(γ)
i=1

∑T (γ)−1
t=0 E(exp β̃ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t)∑m(γ)

i=1

∑T (γ)−1
t=0 E((exp β̂ᵀVi,t)(1 +H(γ, Vi,t)))I(τi ≥ t)

)

= log

1 +

1
T (γ)m(γ)

∑m(γ)
i=1

∑T (γ)−1
t=0 E(exp β̃ᵀVi,t − exp β̂ᵀVi,t)(1 +H(γ, Vi,t)I(τi ≥ t)

1
T (γ)m(γ)

∑m(γ)
i=1

∑T (γ)−1
t=0 E((exp β̂ᵀVi,t)(1 +H(γ, Vi,t)))I(τi ≥ t)


(A.43)

We know that
x

1 + x
≤ log(1 + x) ≤ x.

Hence,

1
T (γ)m(γ)

∑m(γ)
i=1

∑T (γ)−1
t=0 E(exp β̃ᵀVi,t − exp β̂ᵀVi,t)(1 +H(γ, Vi,t)I(τi ≥ t)

1
T (γ)m(γ)

∑m(γ)
i=1

∑T (γ)−1
t=0 E((exp β̃ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t))

≤ α(γ)− α∗(γ) (A.44)

and

α(γ)− α∗(γ) ≤
1

T (γ)m(γ)

∑m(γ)
i=1

∑T (γ)−1
t=0 E(exp β̃ᵀVi,t − exp β̂ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t)

1
T (γ)m(γ)

∑m(γ)
i=1

∑T (γ)−1
t=0 E((exp β̂ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t))

(A.45)

Consider first the denominator of the LHS of (A.44). Note that for a fixed i and t, we can use the
bound

|(exp β̃ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t))| ≤ exp β̃ᵀVi,t + γ exp β̃ᵀVi,t
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Also,
exp β̃ᵀVi,t(1 +H(γ, Vi,t))I(τi ≥ t)→ exp β̃ᵀVi,t a.s.

Hence, by the dominated convergence theorem

E((exp β̃ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t))→ E((exp β̃ᵀVi,t)) > 0

Hence 1
T (γ)m(γ)

∑m(γ)
i=1

∑T (γ)−1
t=0 E((exp β̂ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t)) is O(1). The denominator of

(A.45) can be written as

1

T (γ)m(γ)

m(γ)∑
i=1

T (γ)−1∑
t=0

E(exp((β̂ − β̃)ᵀVi,t) exp(β̃ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t))

Using Fatou’s Lemma and similar arguments as above, it can be shown that

E((exp β̂ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t)) = Ω(1)

for every i and t. The asymptotic ‖α(γ)− α∗(γ)‖22 is thus governed by 1

T (γ)m(γ)

m(γ)∑
i=1

T (γ)−1∑
t=0

E(exp β̃ᵀVi,t − exp β̂ᵀVi,t)(1 +H(γ, Vi,t))I(τi ≥ t)

2

. (A.46)

Additionally, from Assumption 1, we know that |H(γ, Vi,t)| ≤ Cγ exp(β̃ᵀVi,t). Hence, the key
expression to analyse is

E(exp β̃ᵀVi,t − exp β̂ᵀVi,t)I(τi ≥ t). (A.47)

Consider the Taylor series

ex = ey +

∞∑
r=1

(x− y)r

r!
ey.

Setting x = β̂ᵀVi,t and y = β̃ᵀVi,t, (A.47) becomes

E

(
(β̂ − β̃)ᵀVi,t exp(β̃ᵀVi,t)I(τi ≥ t) +

∞∑
r=2

((β̂ − β̃)ᵀVi,t)
r

r!
exp(β̃ᵀVi,t)I(τi ≥ t)

)
.

As before, the first term contributes significantly while the remaining terms can be shown to be
asymptotically negligible. Using the Cauchy-Schwarz inequality on the first term, and the first part
of Theorem 4.1, (A.46) is O(γζ) +O(γζ+δ−1).

Proof of Lemma A.4 :
Notice that

α∗(γ)− α̂(γ) = log

 1
γT (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 Di,t+1

1
γT (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 EDi,t


− log

 1
T (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 exp(β̂ᵀVi,t)I(τi ≥ t)

1
T (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 E((exp β̂ᵀVi,t)I(τi ≥ t))

 (A.48)
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As in the proof of Lemma A.3, the asymptotic behaviour of the MSE of (A.48) is governed by

E

 1
γT (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 Di,t+1 − EDi,t+1

1
γT (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 EDi,t+1

2

(A.49)

and

E

 1
T (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 exp(β̂ᵀVi,t)I(τi ≥ t)− E((exp β̂ᵀVi,t)I(τi ≥ t))

1
T (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 E((exp β̂ᵀVi,t)I(τi ≥ t))

2

. (A.50)

Note that from the proof of Lemma A.2, (A.49) is O(γζ) +O(γζ+δ−1). Using arguments similar
to the proof of Lemma A.2 it can be seen that

E

 1
T (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 exp(β̂ᵀVi,t)I(τi ≥ t)− E((exp β̂ᵀVi,t)I(τi ≥ t))

1
T (γ)m(γ)

∑m(γ)
i=0

∑T (γ)−1
t=0 E((exp β̂ᵀVi,t)I(τi ≥ t))

2

= O(γζ)+O(γζ+δ−1)

This proves Lemma A.4.

A.2 Proofs of intermediate lemmas

We first state a well known fact: Let X ∈ <d be a Gaussian random vector with a covariance
matrix Σ = (σi,j). Then for any r ∈ <d,

E exp(rᵀX) = exp

(
1

2
rᵀΣr

)
= exp

1

2

∑
i,j

rirjσi,j

 (A.51)

Proof of Lemma A.5 :
Let

Y =
(
Yj1 , Yj2 , . . . Yjk

)ᵀ
and ek be the all 1’s vector of length k. Let ΣY = (σY )m,n be the variance covariance matrix of Y ,
where

(σY )m,n = EYjmYjn .

Note that we may re-write
k∑
r=1

Yjr = eᵀkY (A.52)

Then, by (A.51),

E
(

exp(β̃eᵀkY )
)

= exp

(
β̃2

2

∑
m,n

(σY )m,n

)
. (A.53)

To complete the proof, we must evaluate (σY )m,n. By definition,

Yt =
t∑

r=−∞
ρt−rNt−r
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Suppose jm < jn. Then,

Yjn =

jm∑
r=−∞

ρjn−rNjn−r +

jn∑
r=jm+1

ρjn−rNjn−r

= ρjm−jnYjm +

jn∑
r=jm+1

ρjn−rNjn−r.

Note that the second term of the summation is independent of Yjm . Further, by stationarity,

Yt ∼ N
(

0,
1

1− ρ2

)
∀t.

From the above and by symmetry,

(σY )m,n =
1

1− ρ2
ρ|jm−jn| (A.54)

Lemma A.5 follows from (A.53) and (A.54).

Proof of Lemma A.6:
Let j1 < j2 · · · < jk. Then, Let

e∗ = (β̃ek−1, βk).

Let S2 be the set of all pairwise combinations of j1, j2, . . . , jk−1. From (A.51),

E (exp(e∗ᵀY )) = exp

 1

1− ρ2

 β̃2
2

(k − 1) + β̃2
∑

im,in∈S2:im>in

ρ(im−in) + βkβ̃
k−1∑
r=1

ρ(jk−jr) +
1

2
β2k


(A.55)

Differentiating both sides of (A.55) with respect to βk, interchanging the derivative and the ex-
pectation using the dominated convergence theorem and then setting βk to β̃, we get the desired
result.

Proof of Lemma A.7 :
Let m,n be such that k > m > n > 0. Since i1 < i2 · · · < ik, im − in > m − n. We now note
that a term of the form im − im−r occurs exactly k − r times in the summation and further, that
ρ(im−im−r) is upper bounded by |ρr|. Then the summation in (A.18) is upper bounded by

k∑
r=1

(k − r)|ρ|r,

This gives Lemma A.7

Proof of Lemma A.8 :
We may rewrite Vi,t1 + Vj,t2 as

Vi,t1 + Vj,t2 =

t1∑
k=−∞

M t1−kφi,k +

t2∑
k=−∞

M t2−kφj,k

=

t1∑
k=−∞

M t1−k (φi,k +M t2−t1φj,k
)

+

t2∑
k=t1+1

M t2−kφj,k. (A.56)
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This is a sum of independent random vectors, whose covariance matrix is the sum of covariance
matrices of its individual components. In order to analyse further we must consider the variance
covariance matrices of φi,t and φj,t. Let i 6= j. Then,

E(φi,tφ
ᵀ
j,t) = E

((
εt
ψi,t

)
(εt, ψj,t)

)
= E

(
εtε

ᵀ
t 0

0 0

)
=

(
I 0
0 0

)
(A.57)

. = I?

Similarly, if i = j, then
E(φi,tφ

ᵀ
j,t) = I. (A.58)

First observe that,

E(
(
φi,k +M t2−t1φj,k

) (
φi,k +M t2−t1φj,k

)ᵀ
) = I +M t2−t1I? + I?(M t2−t1)ᵀ +M t2−t1 · (M t2−t1)ᵀ.

This implies that

E
(
M t1−k ((φi,k +M t2−t1φj,k

) (
φi,k +M t2−t1φj,k

)ᵀ)
(M t1−k)ᵀ

)
= M t1−k(I +M t2−t1I? + I?(M t2−t1)ᵀ +M t2−t1 · (M t2−t1)ᵀ)(M t1−k)ᵀ

= M t1−k · (M t1−k)ᵀ +M t2−k · (M t2−k)ᵀ +M t2−k · I?(M t1−k)ᵀ +M t1−k · I?(M t2−k)ᵀ.

We now use the fact that the φi,t’s are independent over time to get the total covariance matrix,
given by

t1∑
k=−∞

M t1−k · (M t1−k)ᵀ +M t2−k · (M t2−k)ᵀ +M t2−k · I?(M t1−k)ᵀ +M t1−k · I?(M t2−k)ᵀ. (A.59)

The covariance matrix of the second term of (A.56) can be shown to be

t2∑
k=t1+1

M t2−k · (M t2−k)ᵀ =

∞∑
l=0

M l · (M l)ᵀ −
∞∑

l=t2−t1

M l · (M l)ᵀ. (A.60)

Lemma A.8 follows.

Proof of Lemma A.9 :

〈β̃,Mk.

∞∑
l=0

M l · I? · (M l)ᵀβ̃〉 ≤ ‖β̃‖2
∥∥∥Mk ·

∞∑
l=0

M l · I? · (M l)ᵀβ̃
∥∥∥

≤ ‖β̃‖2‖M‖k
∞∑
l=0

‖M‖l‖I?‖‖M‖l‖β̃‖2

≤ ‖β̃‖22
1− ‖M‖2

‖M‖k,
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where the first inequality is a result of the Cauchy - Schwartz inequality, and the second a result
of the definition of matrix norm.

Proof of Lemma A.10 :
It is sufficient to show that

exp
(
θ · ρk

)
− 1 < 2θρk.

for each large enough k. To this end, note that if x > 0, f(x) = exp(x)−1
x is an increasing function

of x and hence uk ,
exp(θ·ρk)−1

θ·ρk decreases in k, such that limk→∞ uk = 1. Hence, ∃k1 : ∀k ≥ k1,

uk < 2. Then, we have ∀k ≥ k1, exp
(
θ · ρk

)
− 1 < 2θρk. Then,

∞∑
k=K

(
exp

(
θ · ρk

)
− 1
)
→ 0,

as K →∞ and the overall sum is bounded.
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