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Abstract

We consider a multi-time period portfolio credit risk model. The default probabil-
ities of each obligor in each time period depend upon common as well as firm specific
factors. The time movement of these factors is modelled as a vector autoregressive
process. The conditional default probabilities are modelled using a general represen-
tation that subsumes popular default intensity models, logit-based models as well as
threshold based Gaussian copula models. We develop an asymptotic regime where the
portfolio size increases to infinity. In this regime, we conduct large deviations analysis
of the portfolio losses. Specifically, we observe that the associated large deviations rate
function is a solution to a quadratic program with linear constraints. Importantly, this
rate function is independent of the specific modelling structure of conditional default
probabilities. This rate function may be useful in identifying and controlling the un-
derlying factors that contribute to large losses, as well as in designing fast simulation
techniques for efficiently measuring portfolio tail risk.

1 Introduction

Financial institutions such as banks have portfolio of assets comprising thousands of loans,

defaultable bonds, credit sensitive instruments and other forms of credit exposures. Calcu-

lating portfolio loss distribution at a fixed time in future as well as its evolution as a function

of time, is crucial to risk management: Of particular interest are computations of unexpected

loss or tail risk in the portfolio. These values are important inputs to the amount of capital

an institution may be required to hold for regulatory purposes. There is also interest in how

this capital requirement evolves over time.

In this short note, we develop a discrete time dynamic model that captures the stochastic

evolution of default probabilities of different firms in the portfolio as a function of time. We
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then develop an asymptotic regime to facilitate analysis of tail distribution of losses. We

conduct large deviations analysis of losses in this regime identifying the large deviations rate

function associated with large losses. This tail analysis provides great deal of insight into

how large losses evolve over time in a credit portfolio.

There is a vast literature on modelling credit risk and on modelling a portfolio of credit risk

(see, e.g., [9, 15, 10]). [11, 4, 12, 2, 17] are some of the works that conduct large deviations

analysis for large portfolio losses in a static single period setting.

Our contributions: As mentioned earlier, we model the evolution of the credit portfolio in

discrete time. The conditional probabilities of default of surviving firms in any time period is

modelled as a function of a linear combination of stochastic covariates. This subsumes logit

function models for conditional probabilities, default intensity models (in discrete time) as

well as threshold based Gaussian and related copula models (see [8, 7, 6, 3, 16] as examples

where similar dependence on stochastic covariates is considered). We model the stochastic

evolution of the stochastic covariates as a vector AR process, although the essential features

of our analysis are valid more broadly.

As is a common modelling practice, we assume that these stochastic variates are multi-

variate Gaussian distributed, and can be classified as:

• Systemic common covariates: These capture macroeconomic features such as GDP

growth rates, unemployment rates, inflation, etc.

• Class specific covariates: All loans in our portfolio belong to one of a fixed number of

classes. These capture the common exposure to risk to obligors in the same industry,

geographic region, etc.

• Idiosyncratic variates: This captures the idiosyncratic risk corresponding to each

obligor.

We embed the portfolio risk problem in a sequence of problems indexed by the portfolio

size n. We develop an asymptotic regime where the conditional default probabilities decrease

as n increases. In this regime we identify the large deviations rate function of the probability

of large losses at any given time in future. Our key contribution is to show that the key

component to ascertaining this rate function is a solution to a quadratic program with linear

constraints. Further we observe in specialized settings that the resultant quadratic program

can be explicitly solved to give a simple expression for the large deviations rate function.

Our other contribution is to highlight that in a fairly general framework, the underlying

structure of how portfolio losses build up is independent of the specific model for conditional
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default probabilities - thus whether we use default intensity model, logit based model or a

Gaussian Copula based model for default probabilities, to the first order (that is, on the

large deviations scaling), the portfolio tail risk measurement is unaffected.

Our large deviations analysis may be useful in identifying and controlling parameters that

govern the probability of large losses. It is also critical to development of fast simulation

techniques for the associated rare large loss probabilities. Development of such techniques is

part of our ongoing research and not pursued here. In this paper, we assume that each class

has a single class specific covariate and these are independent of all other covariates. This

is a reasonable assumption in practice and makes the analysis substantially simpler. As we

discuss later in Section 3, relaxing this and many other assumptions, is part of our ongoing

research that will appear separately.

Roadmap: In Section 2, we develop the mathematical framework including the asymptotic

regime for our analysis. We end with a small conclusion and a discussion of our ongoing

work in Section 3. Some of the technical details are kept in the appendix in Section 4.

2 Mathematical Model

Consider a portfolio credit risk model comprising n obligors. These are divided into K

classes {1, 2, . . . , K}, Cj denotes the obligors in class j. As mentioned in the introduction,

we model conditional default probabilities using structures that subsume discrete default

intensity models considered in Duffie, Saita, Wang [8] as well as Duan et. al. [7], popular

logit models (see, e.g., [3], [16]), as well as threshold based Gaussian and related copula

models (see, e.g., [11, 12, 2]).

First consider the discrete default intensity model and suppose that time horizon of our

analysis is a positive integer τ . We restrict ourselves to discrete default intensities taking

the proportional-hazards form as in [8, 7]. Specifically, suppose that one period conditional

default probability for a firm i in Cj, at period t ≤ τ , is given by

pi,j,t = 1− exp[− exp(Pi,j,t)],

where,

Pi,j,t = −αj + βTFt + γjGj,t + εi,t,

where the above variables have the following structure:

• For j ≤ K, αj > 0 and for for d ≥ 1, β ∈ <d. (γj, j ∈ K) are w.l.o.g. non-negative

constants.
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• Random variables ε = (εi,t : i ≤ n, t ≤ τ) are assumed to be i.i.d. (independent, iden-

tically distributed) with standard Gaussian distribution with mean zero and variance

one.

• (Ft ∈ <d : t = 0, . . . , τ) denote the common factors that affect default probabilities of

each obligor. To keep the analysis simple we assume that (Ft : t = 0, . . . , τ) follows

the following VAR(1) process.

Ft+1 = AFt + Ẽt+1

where A ∈ <d×d and Ẽ = (Ẽt : t = 1, . . . , τ) is a sequence of i.i.d. random vectors,

assumed to be Multi-variate Gaussian with mean 0 and positive definite variance co-

variance matrix Σ. Further let B be a matrix such that BBT = Σ. Then, we can

model

Ft+1 = AFt + BEt+1

where, each Et = (Et,j : j ≤ d) is a vector of independent mean zero, variance one,

Gaussian random variables. Then, it follows that for t ≥ 1,

Ft = AtF0 +
t∑
i=1

At−iBEi.

• The random variables (Gj,t : j ≤ K, t ≤ τ) capture the residual class risk (once the risk

due to the common factors is accounted for by Ẽ). These are assumed to be independent

of Ẽ as well as ε. Further, we assume that they follow a simple autoregressive structure

Gj,t = ηjGj,t−1 + Λj,t

where (Λj,t : j ≤ K, t ≤ τ) are assumed to be i.i.d., mean zero, variance one, standard

Gaussian distributed.

• It follows that

Gj,t = ηtjGj,0 +
t∑
i=1

ηt−ij Λj,i. (1)

To keep the analysis simple, we assume that exposure ei of each obligor i ∈ Cj equals exj.

This denotes the amount lost if an obligor in Cj defaults net of recoveries made on the loan.

An analogous logit structure for conditional probabilities corresponds to setting

pi,j,t =
exp(Pi,j,t)

1 + exp(Pi,j,t)
.
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In the remainder of the paper, we assume that

pi,j,t = F (Pi,j,t)

where F : < → [0, 1] is a distribution function that we assume is strictly increasing. Thus,

F (−∞) = 0 and F (∞) = 1. In the setting of Logit function

F (x) =
eθx

1 + eθx
(2)

and for forward intensity function

F (x) = 1− exp(−eθx) (3)

for θ > 0.

Another interesting setting to consider is the J. P. Morgan’s threshold based Gaussian

Copula models extensively studied in literature, see, e.g., [11] and [12]. Adapting this ap-

proach to our setting, an obligor i in class j that has survived till time t−1, defaults at time

t if

βTFt + γjGj,t + εi,t > αj

for large αj. These models are studied in literature for a single time period, but can be

generalized for multiple time periods by having a model for time evolution of common and

class specific factors, as we consider in this paper.

One way to concretely fit this to our outlined framework, express

εi,t =
εi,t(1) + εi,t(2)√

2

where εi,t(1) and εi,t(2) are independent Gaussian mean zero, variance one random variables.

Then, set

Pi,j,t = −αj + βTFt + γjGj,t +
1√
2
εi,t(1)

to get

pi,j,t = F (Pi,j,t) = Φ̄(−Pi,j,t) (4)

where Φ̄(·) denotes the tail distribution function of a mean zero, variance half, Gaussian

random variable (here F (x) = Φ̄(−x)).

2.1 Probability of large losses

In this note, our interest is in developing large deviations asymptotic for the probability of

large losses in the portfolio by any specified time τ . It may be useful to spell out a Monte
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Carlo algorithm to estimate the probability that portfolio losses L by time τ exceed a large

threshold u.

Monte Carlo Algorithm: Suppose that the current time is zero and our interest is in gener-

ating via simulation independent samples of portfolio losses by time τ . We assume that F0

and (Gj(0) : j ≤ K) are available to us.

In the algorithm below, let St denote the surviving, non-defaulted obligors at (just after)

time t and Lt denote the losses incurred at time t. S0 denotes all the obligors. The algorithm

then proceeds as follows

1. Set time t = 1.

2. While t ≤ τ ,

(a) Generate independent samples of (εi,t : i ∈ St−1), Et and (Λj,t : j ≤ K) and

compute pi,j,t for each (i ∈ St−1, j ≤ K).

(b) Generate independent uniform numbers (Ui,t : i ∈ St−1). Obligor i ∈ St−1 defaults

at time t if Ui,t ≤ pi,j,t. Recall that obligor i ∈ Cj causes loss ej if it defaults.

Compute St as well as Lt.

3. A sample of total loss by time T is obtained as L =
∑τ
t=1 Lt.

4. Set I(L > u) to one if the loss L exceeds u and zero otherwise. Sample average of

independent samples of I(L > u) then provides an unbiased and consistent estimator

of P (L > u).

As mentioned in the introduction, we analyze the probability of large losses in an asymp-

totic regime that we develop in Section 2.2.

2.2 Asymptotic regime

Let (Pn : n ≥ 1) denote a sequence of portfolios. Pn denotes a portfolio with n obligors.

As before the size of class Ck in Pn equals ckn so that
∑K
k=1 ck = 1. To avoid unnecessary

notational clutter we assume that ckn is an integer for each k and n.

In Pn, for each n, the conditional probability of default pi,j,t(n) at time t for obligor i ∈ Cj
that has not defaulted by time t− 1 is denoted by F (Pi,j,t(n)), where

Pi,j,t(n) = −αjmn + m̃nβ
TFt + m̃nγjGj,t + m̃nεi,t

for each n, i and t. Here, mn and m̃n are positive sequences increasing with n. The sequence

of random vectors (Ft : t ≤ τ) and (Gj,t : j ≤ K, t ≤ τ) evolve as specified in the previous
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section and notations (Et : t ≤ τ) and (Λj,t : j ≤ K, t ≤ τ) remain unchanged. For notations

(St,Lt : t ≤ τ), (Ui,t : i ≤ n, t ≤ τ) we simply suppress dependence on n for presentation

simplicity. Here, (Ui,t : i ≤ n, t ≤ τ) are used to facilitate Monte Carlo interpretation of

defaults.

The following assumption is needed.

Assumption 1

lim sup
n→∞

rn =
mn

m̃n

=∞. (5)

Remark 1 There is a great deal of flexibility in selecting {mn} and {m̃n} allowing us to

model various regimes of default probabilities. When rn increases to infinity at a fast rate,

the portfolio comprises obligors with small default probabilities. When it goes to infinity at

a slow rate, the portfolio comprises obligors with relatively higher default probabilities.

Let Ãi,t denote the event that obligor i defaults at time t in Pn, i.e., i ∈ St−1 and Ui,t ≤
pi,j,t(n). Then,

Ai,t = ∪ts=1Ãi,s

denotes the event that obligor i defaults by time t.

The aim of this short note is to develop the large deviations asymptotics for the probabil-

ities

P (
n∑
i=1

eiI(Ai,τ ) > na)

as n→∞.

Note that obligor i ∈ St−1 ∩ Cj defaults at time t if

Ui,t ≤ F (Pi,j,t(n)).

Equivalently, if

Pi,j,t(n) ≥ F−1(Ui,t).

This in turn corresponds to

−mnαj + m̃nβ
T (AtF0 +

∑t
i=1A

t−iBEi) +

m̃n(ηtγjGj,0 + γj
∑t
i=1 η

t−iΛj,i) + m̃nεi,t ≥ F−1(Ui,t). (6)

Let Ht = βT (
∑t
j=1A

t−jBEj). For each i, j, let hj = (hj,k : 1 ≤ k ≤ d) be defined by

hj = βTAjB.
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Recall that Et = (Et,k : k ≤ d) is a vector of independent mean zero variance 1, Gaussian

random variables. Thus, we may re-express

Ht =
t∑

j=1

d∑
k=1

ht−j,kEj,k.

Then Ht is a mean zero Gaussian random variable with variance

v(Ht) = βT

 t∑
j=1

At−jΣ(At−j)T

 β.
Let Yj,t = γj

∑t
k=1 η

t−kΛj,k and for i ∈ Cj,

Zi,t(n) = εi,t − m̃−1n F−1(Ui,t) + βTAtF0 + ηtγjGj,0.

Then, Ãi,t occurs if i ∈ St−1 ∩ Cj and

Ht + Yj,t ≥ rnαj − Zi,t(n).

Below we put a mild restriction on mn, m̃n, tail distribution of each εi,t, and the functional

form of F :

Assumption 2 There exists a non-negative, non-decreasing function g such that g(x)→∞
as x→∞, and

lim sup
n

sup
t≤τ,j≤K,i∈Cj

P (Zi,t(n) ≥ x) ≤ e−g(x).

Further, there exists a δ ∈ (0, 1) such that

lim inf
n→∞

g(rδn)n

r2n
= +∞. (7)

Remark 2 Since, for fixed F0 and Gj,0, the term βTAtF0 + ηtγjGj,0 can be uniformly

bounded by a constant, call it c, and

P (εi,t − m̃−1n F−1(Ui,t) ≥ x− c) ≤ P (εi,t ≥ (x− c)/2) + P (−m̃−1n F−1(Ui,t) ≥ (x− c)/2),

in Assumption 2, the key restriction is imposed by the tail distribution of −m̃−1n F−1(Ui,t)

and we look for a function g and δ ∈ (0, 1) such that

P (−m̃−1n F−1(Ui,t) ≥ x) ≤ e−g(x) (8)

for all sufficiently large n, and (7) holds. Equation (8) is equivalent to finding g so that

log

(
1

F (−m̃nx)

)
≥ g(x), (9)
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for all sufficiently large n. Consider first the case of F in (2) as well as (3). In that case, the

LHS is similar to

θm̃nx

for large m̃nx, and condition (7) holds if m̃n, rn and δ ∈ (0, 1) are selected so that

m̃nr
δ
nn

r2n
→∞.

This is achieved, for instance, if for κ ∈ (0, 1), rn = nκ, and

2− 1/κ < δ < 1,

for arbitrarily increasing {m̃n}.
Now consider F in (4) where F (x) = Φ̄(−x). Then, LHS of (9) is similar to

m̃2
nx

2

for large m̃nx, and condition (7) holds if m̃n, rn and δ are selected so that

m̃nr
δ
nn

r2n
→∞.

This is achieved, for instance, if for κ >, rn = nκ, and

1− 1/(2κ) < δ < 1,

for arbitrarily increasing {m̃n}.

Let

Nj(t) =
∑
i∈Cj

I(Ãi,t)

denote the number of defaults for class j at time t for each j ≤ K and t ≤ τ .

Let

N = {N1(τ)

n
≥ aτ},

where aτ ∈ (0, c1).

In Theorem 1 below we argue that on the large deviations scaling, the probability of

default of any fraction of total customers in a single class at a particular time equals the

probability that the complete class defaults at that time. It further highlights the fact that

in the single class setting, in our regime, large losses are much more likely to occur later

rather than earlier. This then provides clean insights into how large losses happen in the

proposed regime.
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Theorem 1 Under Assumptions 1 and 2,

lim
n→∞

1

r2n
logP (N ) = −q∗(τ),

where q∗(t) is the optimal value of the quadratic program

min
t∑

k=1

d∑
p=1

e2k,p +
t∑

k=1

l2k,

subject to,
t∑

k=1

d∑
p=1

ht−k,pek,p + γj
t∑

k=1

ηt−k1 lk ≥ α1,

and, for 1 ≤ t̃ ≤ t− 1,
t̃∑

k=1

d∑
p=1

ht̃−k,pek,p + γj
t̃∑

k=1

ηt̃−k1 lk ≤ α1.

Further, q∗(t) equals
α2
1∑t

k=1

∑d
p=1 h

2
t−k,p + γ2j

∑t
k=1 η

2(t−k)
1

. (10)

Note that it strictly reduces with t.

Remark 3 In Theorem 1, its important to note that q∗(τ) is independent of the values

aτ ∈ (0, c1).

Some notation, and Lemma 1 are needed for proving Theorem 1. For each j ≤ K, let

Hj,t = {Ht + Yj,t ≥ rnαj + rδn}

and

H̃j,t = {Ht + Yj,t ≤ rnαj − rδn}.

Let,

Ht
j =

(
Hj,t ∩ (∩t−1

t̃=1
H̃j,t̃)

)
.

Lemma 1

lim
n→∞

1

r2n
logP (Ht

1) = −q∗(t),

where q∗(t) is defined in (10).
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2.3 Key result

Recall that our interest is in developing large deviations asymptotics for P (
∑n
i=1 eiI(Ai,τ ) >

na).

Let b denote a sub-collection of indices of {1, 2, . . . , K} such that
∑
i∈b exjcj > a, while

this is not true for any subset of b. We call such a set b a minimal set, and we let B denote

a collection of all such minimal sets (similar definitions arise in [12]). Consider the question

that losses from the portfolio exceed na when we count losses only from classes indexed by

b. Our analysis from Theorem 1 can be repeated with minor adjustments to conclude that

the large deviations rate for this is the smallest of all solutions to the quadratic programs of

the form described below.

For t = (tj, j ∈ b) such that each tj ≤ τ . Set tmax = maxj∈b tj and let q∗(t,b) be the

solution to quadratic program below (call it O2),

min
tmax∑
k=1

d∑
p=1

e2k,p +
∑
j∈b

tj∑
k=1

l2j,k

subject to, for all j ∈ b,

tj∑
k=1

d∑
p=1

htj−k,pek,p + γj

tj∑
k=1

η
tj−k
j lj,k ≥ αj,

and, for 1 ≤ t̃ ≤ tj − 1,
t̃∑

k=1

d∑
p=1

ht̃−k,pek,p + γj
t̃∑

k=1

ηt̃−kj lk ≤ αj.

Set

q∗(τ,b) = min
t
q∗(t,b).

It is easy to see that there exists an optimal t∗ such that q∗(τ,b) = q∗(t∗,b) with the

property that the respective constraints for each t̃ < t∗j are not tight. Whenever, there exists

t̃ < tj such that constraint corresponding to t̃ is tight, a better rate function value is achieved

by setting such a tj = t̃. This then helps complete the proof of the large deviations result.

It is also then easy to see that the most likely way for {∑n
i=1 eiI(Ai,t) > na} to happen is

that all obligors belonging to class b default by time t, where b is selected as the most likely

amongst all the classes in B. In other words,

lim
n→∞

1

r2n
logP (

n∑
i=1

eiI(Ai,τ ) > na) = −min
b∈B

q∗(τ,b).

The proof again is straightforward and relies on the following simple lemma (see, e.g., [5],

Lemma 1.2.15).
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Lemma 2 Let N be a fixed integer. Then, for every aiε ≥ 0,

lim sup
ε→∞

ε log

(
N∑
i=1

aiε

)
= max

i≤N
lim sup
ε→∞

ε log aiε.

In particular, the lim sup above can be replaced by lim above if maxi≤N limε→∞ ε log aiε exists.

2.4 Single period setting

In practice, one is often interested in solving for portfolio credit risk in a single period, that

is, τ = 1. In that case, it is easy to arrive at a simple algorithm to determine q∗(1,b) and

the associated values of the variables.

Note that the optimization problem O2 reduces to

min
d∑
p=1

e21,p +
∑
j∈b

l2j,1,

subject to, for all j ∈ b,
d∑
p=1

h0,pe1,p + γjlj,1 ≥ αj.

Call this problem O3. The following remark is useful in solving O3.

Remark 4 It is easy to see that for the optimization problem - minimize
∑n
k=1 x

2
k subject

to
n∑
k=1

akxk ≥ b, (11)

the solution for each k is

x∗k = b
ak∑n
j=1 a

2
j

and (11) is tight. The optimal objective function value is

b2∑
k a

2
k

.

To simplify the notation, suppose that b = {1, 2, . . . , k} and that α1 ≥ α2 ≥ αk > 0. In

view of Remark 4, solving O3 can be reduced to solving the quadratic program

min cx2 +
∑
j≤k

cjy
2
j

subject to

x+ yj ≥ αj (12)
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for all j ≤ k, where c = 1/(
∑d
p=1 h

2
0,p) and cj = 1/γ2j for each j.

It is easily seen using the first order condition that there exists a 1 ≤ j∗ ≤ k such that

under the unique optimal solution, constraints (12) hold as equalities for 1 ≤ j ≤ j∗, that

optimal x∗ equals ∑
j≤j∗ cjαj

c+
∑
j≤j∗ cj

and this is ≤ αj∗ . Then, yj = αj − x∗ for j ≤ j∗, and yj = 0 otherwise.

Further, the optimal objective function equals,

(c+
∑
j≤j∗

cj)

 ∑
j≤j∗ cjα

2
j

c+
∑
j≤j∗ cj

−
( ∑

j≤j∗ cjαj
c+

∑
j≤j∗ cj

)2
 .

The algorithm below to ascertain j∗ is straightforward.

Algorithm

1. If ∑
j≤k cjαj

c+
∑
j≤k cj

≤ αk

then j∗ = k. Else, it is easy to check that∑
j≤k−1 cjαj

c+
∑
j≤k−1 cj

> αk

2. As an inductive hypothesis, suppose that∑
j≤r cjαj

c+
∑
j≤r cj

> αr+1.

If the LHS is less than or equal to αr, set j∗ = r, and STOP. Else, set r = r − 1 and

repeat induction.

It is easy to see that this algorithm will stop as,

c1α1

c+ c1
< α1.

3 Conclusion and ongoing work

In this paper we modelled portfolio credit risk as an evolving function of time. The de-

fault probability of any obligor at any time depended on common systemic covariates, class

dependent covariate and idiosyncratic random variables - we allowed a fairly general repre-

sentation of conditional default probabilities that subsumes popular logit, default intensity
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based representations, as well as threshold based Gaussian and related copula models for

defaults. The evolution of systemic covariates was modelled as a VAR (1) process. The

evolution of class dependent covariates was modelled as an independent AR process (inde-

pendent of systemic and other class co-variates). We further assumed that these random

variables had a Gaussian distribution. In this framework we analyzed occurrence of large

losses as a function of time. In particular, we characterized the large deviations rate function

of large losses. We also observed that this rate function is independent of the representation

selected for conditional default probabilities.

This was a short note meant to highlight some of the essential issues. In our ongoing effort

we build in more realistic and practically relevant features including:

1. We conduct large deviations analysis

(a) when the class and the systemic covariates are dependent with additional relax-

ations including allowing exposures and recoveries to be random. Further, as in

[8], we also model firms exiting due to other reasons besides default, e.g., due to

merger and acquisitions. We also allow defaults at any time to explicitly depend

upon the level of defaults occurring in previous time periods (see, e.g., [16]).

(b) when the covariates are allowed to have more general fatter-tailed distributions.

(c) When the portfolio composition is time varying.

2. Portfolio large loss probabilities tend to be small requiring massive computational effort

in estimation when estimation is conducted using naive Monte Carlo. Fast simulation

techniques are developed that exploit the large deviations structure of large losses (see,

e.g., [14, 1] for introduction to rare event simulation).

4 Appendix: Some proofs

Let ||x||2 =
∑n
i=1 x

2
i . Consider the optimization problem

min ||x||2 (13)

s.t.
n∑
j=1

ai,jxj ≥ bi i = 1, . . . ,m, (14)

and let x∗ denote the unique optimal solution of this optimization problem. It is easy to see

from first order conditions that if (bi : i ≤ m, bi > 0), is replaced by (αbi : i ≤ m), α > 0,

then the solution changes to αx∗.
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Let (Xi : i ≤ n) denote i.i.d. Gaussian mean zero variance 1 random variables and let

d(n) denote any increasing function of n such that d(n)→∞ as n→∞.

The following lemma is well known and stated without proof (see, e.g., [12]).

Lemma 3 The following holds:

lim
n→∞

1

d(n)
logP

 n∑
j=1

ai,jXj ≥ bid(n) + o(d(n)) i = 1, . . . ,m

 = −||x∗||2.

Proof of Lemma 1: Recall that we need to show that

lim
n→∞

1

r2n
logP (H) = −q∗(t). (15)

where P (H) denotes the probability of the event that

t∑
j=1

d∑
k=1

ht−j,kEj,k +
t∑

k=1

ηt−kΛ1,k ≥ rnα1 + rδn

and
t̃∑

j=1

d∑
k=1

ht̃−j,kEj,k +
t̃∑

k=1

ηt̃−kΛ1,k ≤ rnα1 − rδn

for 1 ≤ t̃ ≤ t− 1.

From Lemma 3, to evaluate (15), it suffices to consider the optimization problem (call it

O1),

min
t∑

k=1

d∑
p=1

e2k,p +
t∑

k=1

l2k (16)

s. t.
t∑

k=1

d∑
p=1

ht−k,pek,p +
t∑

k=1

ηt−k1 lk ≥ α1, (17)

and
t̃∑

k=1

d∑
p=1

ht̃−k,pek,p +
t̃∑

k=1

ηt̃−k1 lk ≤ α1. (18)

for 1 ≤ t̃ ≤ t− 1.

We first argue that in O1, under the optimal solution, the constraints (18) hold as strict

inequalities.

This is easily seen through a contradiction. Suppose there exists an optimal solution

(êk,p, l̂k, k ≤ t, p ≤ d) such that for t̂ < t,

t̂∑
k=1

d∑
p=1

ht̂−k,pêk,p +
t̂∑

k=1

ηt̂−k1 l̂k = α1

15



and if t̂ > 1, then for all t̃ < t̂ (18) are always strict. We can construct a new feasible solution

with objective function at least as small with the property that constraints (18) are always

strict.

This is done as follows: Let s = t− t̂. Set ēk+s,p = êk,p for all k ≤ t̂ and p ≤ d. Similarly,

set l̄k+s = l̂k for all k ≤ t̂. Set the remaining variables to zero.

Also, since the variables (ēk,p, l̄kk ≤ t, p ≤ d) satisfy constraint (18) with variables

(ēk,p, l̄kk ≤ s, p ≤ d) set to zero, the objective function can be further improved by al-

lowing these to be positive. This provides the desired contradiction. The specific form of

q∗(t) follows from the straightforward observation in Remark 4. 2.

Proof of Theorem 1:

Now,

P (N ) ≥ P (N|Hτ
1)P (Hτ

1).

We argue that P (N|Hτ
1) converges to 1 as n→∞. This term equals

P (
N1(τ)

n
≥ aτ ,

∑τ−1
t=1 N1(t)

n
≤ c1 − aτ |Hτ

1).

This may be further decomposed as

P (

∑τ−1
t=1 N1(t)

n
≤ c1 − aτ |(∩τ−1t=1 H̃1,t)) (19)

times

P (
N1(τ)

n
≥ aτ |

∑τ−1
t=1 N1(t)

n
≤ c1 − aτ ,H1,τ ). (20)

To see that (19) converges to 1 as n→∞, note that it is lower bounded by

1−
τ−1∑
t=1

P (
N1(t)

n
≥ ε|(∩τ−1t=1 H̃1,t))

for ε = (c1 − aτ )/(τ − 1). Consider now,

P (
N1(1)

n
≥ ε|H̃1,1)

This is bounded from above by

2c1nP (Z1,1(n) ≥ rδn)εn

where 2c1n is a bound on number of ways at least εn obligors of Class 1 can be selected from

c1n obligors. Equation 19 now easily follows.

To see (19), observe that this is bounded from above by

2c1nP (Zi,τ (n) ≤ −rδn)(c1−aτ )n

16



Since this decays to zero as n→∞, (19) follows.

In view of Lemma 1, we then have that

lim
n→∞

1

r2n
logP (N ∩Hτ

1) = −q∗(τ),

and thus large deviations lower bound follows. To achieve the upper bound, we need to show

that

lim sup
n→∞

1

r2n
logP (N ) ≤ −q∗(τ). (21)

Observe that

P (N ) ≤ P (Hτ + Y1,τ ≥ rnα1 − rδn) + P (
N1(τ)

n
≥ aτ , Hτ + Y1,τ ≤ rnα1 − rδn).

Now, from Lemma 3 and proof of Lemma 1,

lim
n→∞

1

r2n
logP (Hτ + Y1,τ ≥ rnα1 − rδn) = −q∗(τ).

Now,

P (
N1(τ)

n
≥ aτ , Hτ + Y1,τ ≤ rnα1 − rδn)

is bounded from above by

2nP (Zi,τ > rδn)naτ

so that due to Assumption 2,

lim sup
n→∞

1

r2n
logP (

N1(τ)

n
≥ aτ , Hτ + Y1,τ ≤ rnα1 − rδn) = −∞,

and (21) follows. 2
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